Browsing by Author "Wiederhirn, Guillaume"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access The strength limits of ultra-thin copper films(2007) Wiederhirn, Guillaume; Arzt, Eduard (Prof. Dr.)Elucidating size effects in ultra-thin films is essential to ensure the performance and reliability of MEMS and electronic devices. In this dissertation, the influence of a capping layer on the mechanical behavior of copper (Cu) films was analyzed. Passivation is expected to shut down surface diffusion and thus to alter the contributions of dislocation- and diffusion-based plasticity in thin films. Experiments were carried out on 25 nm to 2 µm thick Cu films magnetron-sputtered onto amorphous-silicon nitride coated silicon (111) substrates. These films were capped with 10 nm of aluminum oxide or silicon nitride passivation without breaking vacuum either directly after Cu deposition or after a 500 °C anneal. The evolution of thermal stresses in these films was investigated mainly by the substrate curvature method betweeen -160 °C and 500 °C. Negligible differences were detected for the silicon nitride vs. the aluminum oxide passivated Cu films. The processing parameters associated with the passivation deposition also had no noticeable effect on the stress-temperature behavior of the Cu. However, the thermomechanical behavior of passivated Cu films strongly depended on the Cu film thickness. For films in the micrometer range, the influence of the passivation layer was not significant, which suggests that the Cu deformed mainly by dislocation plasticity. However, diffusional creep plays an increasing role with decreasing film thickness since it becomes increasingly difficult to nucleate dislocations in smaller grains. Size effects were investigated by plotting the stress at room temperature after thermal cycling as a function of the inverse film thickness. Between 2 µm and 200 nm, the room temperature stress was inversely proportional to the film thickness. The passivation exerted a strong effect on Cu films thinner than 100 nm by effectively shutting down surface diffusion mechanisms. Since dislocation processes were also shut off in these ultra-thin films, they exhibited purely elastic behavior in the measured temperature range. Their lack of plasticity was confirmed by in-situ TEM analysis, which revealed the presence of sessile parallel glide dislocations during thermal cycling. The stress plateau reported for films thinner than 100 nm was attributed to the fact that the thermal strain applied was insufficient to induce yielding. The highest stress value of 1.7 GPa measured at -150 °C is therefore a lower limit for the actual flow stress since even at this high stress the films remained elastic.