Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Wiegand, Simone"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    A universal strategy of perovskite ink‐substrate interaction to overcome the poor wettability of a self‐assembled monolayer for reproducible perovskite solar cells
    (2023) Kulkarni, Ashish; Sarkar, Ranjini; Akel, Samah; Häser, Maria; Klingebiel, Benjamin; Wuttig, Matthias; Wiegand, Simone; Chakraborty, Sudip; Saliba, Michael; Kirchartz, Thomas
    Perovskite solar cells employing [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) self-assembled monolayer as the hole transport layer have been reported to demonstrate a high device efficiency. However, the poor perovskite wetting on Me-4PACz caused by poor perovskite ink interaction with the underlying Me-4PACz presents significant challenges for fabricating efficient perovskite devices. A triple co-solvent system comprising dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and N-methyl-2-pyrrolidone (NMP) is employed to improve the perovskite ink-Me-4PACz coated substrate interaction and obtain a uniform perovskite layer. In comparison to DMF- and DMSO-based inks, the inclusion of NMP shows considerably higher binding energies of the perovskite ink with Me-4PACz as revealed by density-functional theory calculations. With the optimized triple co-solvent ratio, the perovskite devices deliver high power conversion efficiencies of >20%, 19.5%, and ≈18.5% for active areas of 0.16, 0.72, and 1.08 cm2, respectively. Importantly, this perovskite ink-substrate interaction approach is universal and helps in obtaining a uniform layer and high photovoltaic device performance for other perovskite compositions such as MAPbI3, FA1-xMAxPbI3-yBry, and MA-free FA1−xCsxPbI3-yBry.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart