Browsing by Author "Woiski, Christine"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Der biologische Abbau von hydroxylierten Alkylethern(2018) Woiski, Christine; Engesser, Karl-Heinrich (Prof. Dr. rer. nat. habil.)Item Open Access Isolation and characterization of 2-butoxyethanol degrading bacterial strains(2020) Woiski, Christine; Dobslaw, Daniel; Engesser, Karl-HeinrichA total of 11 bacterial strains capable of completely degrading 2-butoxyethanol (2-BE) were isolated from forest soil, a biotrickling filter, a bioscrubber, and activated sludge, and identified by 16S rRNA gene sequence analysis. Eight of these strains belong to the genus Pseudomonas; the remaining three strains are Hydrogenophaga pseudoflava BOE3, Gordonia terrae BOE5, and Cupriavidus oxalaticus BOE300. In addition to 2-BE, all isolated strains were able to grow on 2-ethoxyethanol and 2-propoxyethanol, ethanol, n-hexanol, ethyl acetate, 2-butoxyacetic acid (2-BAA), glyoxylic acid, and n-butanol. Apart from the only gram-positive strain isolated, BOE5, none of the strains were able to grow on the nonpolar ethers diethyl ether, di-n-butyl ether, n-butyl vinyl ether, and dibenzyl ether, as well as on 1-butoxy-2-propanol. Strains H. pseudoflava BOE3 and two of the isolated pseudomonads, Pseudomonas putida BOE100 and P. vancouverensis BOE200, were studied in more detail. The maximum growth rates of strains BOE3, BOE100, and BOE200 at 30 °C were 0.204 h-1 at 4 mM, 0.645 h-1 at 5 mM, and 0.395 h-1 at 6 mM 2-BE, respectively. 2-BAA, n-butanol, and butanoic acid were detected as potential metabolites during the degradation of 2-BE. These findings indicate that the degradation of 2-BE by the isolated gram-negative strains proceeds via oxidation to 2-BAA with subsequent cleavage of the ether bond yielding glyoxylate and n-butanol. Since Gordonia terrae BOE5 was the only strain able to degrade nonpolar ethers like diethyl ether, the degradation pathway of 2-BE may be different for this strain.Item Open Access Plant uptake, translocation and metabolism of PBDEs in plants of food and feed industry : a review(2020) Dobslaw, Daniel; Woiski, Christine; Kiel, Martina; Kuch, Bertram; Breuer, JörnPolybrominated diphenyl ethers (PBDEs) have widely been used for decades as flame retardants in a variety of products like plastics for building insulation, upholstered furniture, electrical appliances, vehicles, aircrafts, polyurethane foams, textiles, cable insulation, appliance plugs and various technical plastics in concentrations of 5-30%. However, PBDEs also act as endocrine disrupters, neurotoxins, and negatively affect fertility. In 2001, worldwide consumption of technically relevant penta-BDEs was still estimated at 7500 tons, octa-BDEs at 3790 tons, and deca-BDE at 56,100 tons, but 50-60% of this total volume are discharged into the environment via sewage sludge and its agricultural use alone. In addition, soils are ubiquitously contaminated by the gaseous or particle-bound transport of PBDEs, which today has its main source in highly contaminated electronic waste recycling sites. The emitted PBDEs enter the food chain via uptake by the plants’ roots and shoots. However, uptake and intrinsic transport behaviour strongly depend on crop specifics and various soil parameters. The relevant exposure and transformation pathways, transport-relevant soil and plant characteristics and both root concentration factors (RCF) and transfer factors (TF) as derivable parameters are addressed and quantified in this review. Finally, a simple predictive model for quantification of RCF and TF based on log KOW values and the organic content of the soil/lipid content of the plants is also presented.