Browsing by Author "Wolff, Lars von"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Investigation of crystal growth in enzymatically induced calcite precipitation by micro-fluidic experimental methods and comparison with mathematical modeling(2021) Wolff, Lars von; Weinhardt, Felix; Class, Holger; Hommel, Johannes; Rohde, ChristianEnzymatically induced calcite precipitation (EICP) is an engineering technology that allows for targeted reduction of porosity in a porous medium by precipitation of calcium carbonates. This might be employed for reducing permeability in order to seal flow paths or for soil stabilization. This study investigates the growth of calcium-carbonate crystals in a micro-fluidic EICP setup and relies on experimental results of precipitation observed over time and under flow-through conditions in a setup of four pore bodies connected by pore throats. A phase-field approach to model the growth of crystal aggregates is presented, and the corresponding simulation results are compared to the available experimental observations. We discuss the model’s capability to reproduce the direction and volume of crystal growth. The mechanisms that dominate crystal growth are complex depending on the local flow field as well as on concentrations of solutes. We have good agreement between experimental data and model results. In particular, we observe that crystal aggregates prefer to grow in upstream flow direction and toward the center of the flow channels, where the volume growth rate is also higher due to better supply.Item Open Access Investigation of different throat concepts for precipitation processes in saturated pore-network models(2024) Schollenberger, Theresa; Wolff, Lars von; Bringedal, Carina; Pop, Iuliu Sorin; Rohde, Christian; Helmig, RainerThe development of reliable mathematical models and numerical discretization methods is important for the understanding of salt precipitation in porous media, which is relevant for environmental problems like soil salinization. Models on the pore scale are necessary to represent local heterogeneities in precipitation and to include the influence of solution-air-solid interfaces. A pore-network model for saturated flow, which includes the precipitation reaction of salt, is presented. It is implemented in the open-source simulator DuMu X. In this paper, we restrict ourselves to one-phase flow as a first step. Since the throat transmissibilities determine the flow behaviour in the pore network, different concepts for the decreasing throat transmissibility due to precipitation are investigated. We consider four concepts for the amount of precipitation in the throats. Three concepts use information from the adjacent pore bodies, and one employs a pore-throat model obtained by averaging the resolved pore-scale model in a thin-tube. They lead to different permeability developments, which are caused by the different distribution of the precipitate between the pore bodies and throats. We additionally apply two different concepts for the calculation of the transmissibility. One obtains the precipitate distribution from analytical assumptions, the other from a geometric minimization principle using a phase-field evolution equation. The two concepts do not show substantial differences for the permeability development as long as simple pore-throat geometries are used. Finally, advantages and disadvantages of the concepts are discussed in the context of the considered physical problem and a reasonable effort for the implementation and computational costs.Item Open Access The phase field approach for reactive fluid-solid interfaces : modeling and homogenization(2023) Wolff, Lars von; Rohde, Christian (Prof. Dr.)