Browsing by Author "Wortmann, Thomas"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Computational optimisation of urban design models : a systematic literature review(2024) Tay, JingZhi; Ortner, Frederick Peter; Wortmann, Thomas; Aydin, Elif EsraThe densification of urban spaces globally has contributed to a need for design tools supporting the planning of more sustainable, efficient, and liveable cities. Urban Design Optimisation (UDO) responds to this challenge by providing a means to explore many design solutions for a district, evaluate multiple objectives, and make informed selections from many Pareto-efficient solutions. UDO distinguishes itself from other forms of design optimisation by addressing the challenges of incorporating a wide range of planning goals, managing the complex interactions among various urban datasets, and considering the social-technical aspects of urban planning involving multiple stakeholders. Previous reviews focusing on specific topics within UDO do not sufficiently address these challenges. This PRISMA systematic literature review provides an overview of research on topics related to UDO from 2012 to 2022, with articles analysed across seven descriptive categories. This paper presents a discussion on the state-of-the-art and identified gaps present in each of the seven categories. Finally, this paper argues that additional research to improve the socio-technical understanding and usability of UDO would require: (i) methods of optimisation across multiple models, (ii) interfaces that address a multiplicity of stakeholders, (iii) exploration of frameworks for scenario building and backcasting, and (iv) advancing AI applications for UDO, including generalizable surrogates and user preference learning.Item Open Access Visual analysis of fitness landscapes in architectural design optimization(2024) Abdelaal, Moataz; Galuschka, Marcel; Zorn, Max; Kannenberg, Fabian; Menges, Achim; Wortmann, Thomas; Weiskopf, Daniel; Kurzhals, KunoIn architectural design optimization, fitness landscapes are used to visualize design space parameters in relation to one or more objective functions for which they are being optimized. In our design study with domain experts, we developed a visual analytics framework for exploring and analyzing fitness landscapes spanning data, projection, and visualization layers. Within the data layer, we employ two surrogate models and three sampling strategies to efficiently generate a wide array of landscapes. On the projection layer, we use star coordinates and UMAP as two alternative methods for obtaining a 2D embedding of the design space. Our interactive user interface can visualize fitness landscapes as a continuous density map or a discrete glyph-based map. We investigate the influence of surrogate models and sampling strategies on the resulting fitness landscapes in a parameter study. Additionally, we present findings from a user study ( N = 12), revealing how experts’ preferences regarding projection methods and visual representations may be influenced by their level of expertise, characteristics of the techniques, and the specific task at hand. Furthermore, we demonstrate the usability and usefulness of our framework by a case study from the architecture domain, involving one domain expert.