Browsing by Author "Wrede, Paul"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Designing covalent organic framework‐based light‐driven microswimmers toward therapeutic applications(2023) Sridhar, Varun; Yildiz, Erdost; Rodríguez‐Camargo, Andrés; Lyu, Xianglong; Yao, Liang; Wrede, Paul; Aghakhani, Amirreza; Akolpoglu, Birgul M.; Podjaski, Filip; Lotsch, Bettina V.; Sitti, MetinWhile micromachines with tailored functionalities enable therapeutic applications in biological environments, their controlled motion and targeted drug delivery in biological media require sophisticated designs for practical applications. Covalent organic frameworks (COFs), a new generation of crystalline and nanoporous polymers, offer new perspectives for light‐driven microswimmers in heterogeneous biological environments including intraocular fluids, thus setting the stage for biomedical applications such as retinal drug delivery. Two different types of COFs, uniformly spherical TABP‐PDA‐COF sub‐micrometer particles and texturally nanoporous, micrometer‐sized TpAzo‐COF particles are described and compared as light‐driven microrobots. They can be used as highly efficient visible‐light‐driven drug carriers in aqueous ionic and cellular media. Their absorption ranging down to red light enables phototaxis even in deeper and viscous biological media, while the organic nature of COFs ensures their biocompatibility. Their inherently porous structures with ≈2.6 and ≈3.4 nm pores, and large surface areas allow for targeted and efficient drug loading even for insoluble drugs, which can be released on demand. Additionally, indocyanine green (ICG) dye loading in the pores enables photoacoustic imaging, optical coherence tomography, and hyperthermia in operando conditions. This real‐time visualization of the drug‐loaded COF microswimmers enables unique insights into the action of photoactive porous drug carriers for therapeutic applications.Item Open Access Immune cell‐based microrobots for remote magnetic actuation, antitumor activity, and medical imaging(2024) Dogan, Nihal Olcay; Suadiye, Eylül; Wrede, Paul; Lazovic, Jelena; Dayan, Cem Balda; Soon, Ren Hao; Aghakhani, Amirreza; Richter, Gunther; Sitti, MetinTranslating medical microrobots into clinics requires tracking, localization, and performing assigned medical tasks at target locations, which can only happen when appropriate design, actuation mechanisms, and medical imaging systems are integrated into a single microrobot. Despite this, these parameters are not fully considered when designing macrophage‐based microrobots. This study presents living macrophage‐based microrobots that combine macrophages with magnetic Janus particles coated with FePt nanofilm for magnetic steering and medical imaging and bacterial lipopolysaccharides for stimulating macrophages in a tumor‐killing state. The macrophage‐based microrobots combine wireless magnetic actuation, tracking with medical imaging techniques, and antitumor abilities. These microrobots are imaged under magnetic resonance imaging and optoacoustic imaging in soft‐tissue‐mimicking phantoms and ex vivo conditions. Magnetic actuation and real‐time imaging of microrobots are demonstrated under static and physiologically relevant flow conditions using optoacoustic imaging. Further, macrophage‐based microrobots are magnetically steered toward urinary bladder tumor spheroids and imaged with a handheld optoacoustic device, where the microrobots significantly reduce the viability of tumor spheroids. The proposed approach demonstrates the proof‐of‐concept feasibility of integrating macrophage‐based microrobots into clinic imaging modalities for cancer targeting and intervention, and can also be implemented for various other medical applications.