Browsing by Author "Xu, Xiaodong"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access First thin-disk oscillator with ceramic Yb:LuScO3 in comparison to the operation with ceramic Yb:Lu2O3(2024) Esser, Stefan; Jing, Wei; Xu, Xiaodong; Graf, Thomas; Abdou Ahmed, MarwanWe report on the characterization and first laser operation of ceramic Yb:LuScO3 in a thin-disk oscillator. The optical performance achieved with a ceramic Yb:LuScO3 disk is compared to the one obtained with an existing ceramic Yb:Lu2O3 disk for reference. The characterization covers the measurement of the fluorescence spectra, the fluorescence lifetimes, and nomarsky imaging. The investigation on the laser operation covers the measurement of resonator losses, output powers, and thermal behavior during continuous-wave operation in a multimode thin-disk oscillator. An average output power of 149 W and a slope efficiency of 51.8% were achieved with the ceramic Yb:LuScO3 disk which reached a maximum surface temperature of about 150 °C. At the same temperature level, a disk made of the already established ceramic Yb:Lu2O3 delivered 957 W of output power with a slope efficiency of 75.7%.Item Open Access Magnetic domains and domain wall pinning in atomically thin CrBr3 revealed by nanoscale imaging(2021) Sun, Qi-Chao; Song, Tiancheng; Anderson, Eric; Brunner, Andreas; Förster, Johannes; Shalomayeva, Tetyana; Taniguchi, Takashi; Watanabe, Kenji; Gräfe, Joachim; Stöhr, Rainer; Xu, Xiaodong; Wrachtrup, JörgThe emergence of atomically thin van der Waals magnets provides a new platform for the studies of two-dimensional magnetism and its applications. However, the widely used measurement methods in recent studies cannot provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to explore the rich properties of magnetic domains and spin textures. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr3. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism and determine the magnetization of a CrBr3 bilayer to be about 26 Bohr magnetons per square nanometer. The high spatial resolution of this technique enables imaging of magnetic domains and allows to locate the sites of defects that pin the domain walls and nucleate the reverse domains. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore nanoscale features in two-dimensional magnets.Item Open Access Single-crystal and ceramic Yb:Lu2O3 gain media for thin-disk oscillators(2023) Esser, Stefan; Xu, Xiaodong; Wang, Jun; Zhang, Jian; Graf, Thomas; Abdou Ahmed, MarwanWe report on the direct comparison of single-crystal and ceramic Yb3+:Lu203 gain media with respect to emission spectra, fluorescence lifetime, depolarization, and laser performance in a continuous-wave thin-disk laser oscillator. The most efficient laser operation was achieved with a single-crystal disk in multimode operation with a slope efficiency of 72.1% and an average output power of 997 W. At the same temperature level, a ceramic disk delivered 861 W with a slope efficiency of 68.6%. In fundamental-mode operation, the highest average power of 360 W and highest optical efficiency of 41.3% were obtained with a ceramic disk. For the single-crystal disk, the fundamental-mode output power was limited to 113 W at an optical efficiency of 29%, potentially due to stress within the crystal.