Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Yordanov, Petar"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Generation of terahertz radiation via the transverse thermoelectric effect
    (2023) Yordanov, Petar; Priessnitz, Tim; Kim, Min‐Jae; Cristiani, Georg; Logvenov, Gennady; Keimer, Bernhard; Kaiser, Stefan
    Terahertz (THz) radiation is a powerful tool with widespread applications ranging from imaging, sensing, and broadband communications to spectroscopy and nonlinear control of materials. Future progress in THz technology depends on the development of efficient, structurally simple THz emitters that can be implemented in advanced miniaturized devices. Here, it is shown how the natural electronic anisotropy of layered conducting transition metal oxides enables the generation of intense terahertz radiation via the transverse thermoelectric effect. In thin films grown on off‐cut substrates, femtosecond laser pulses generate ultrafast out‐of‐plane temperature gradients, which in turn launch in‐plane thermoelectric currents, thus allowing efficient emission of the resulting THz field out of the film structure. This scheme is demonstrated in experiments on thin films of the layered metals PdCoO2 and La1.84Sr0.16CuO4, and model calculations that elucidate the influence of the material parameters on the intensity and spectral characteristics of the emitted THz field are presented. Due to its simplicity, the method opens up a promising avenue for the development of highly versatile THz sources and integrable emitter elements.
  • Thumbnail Image
    ItemOpen Access
    Spectroscopic study of CaMnO3/CaRuO3 superlattices and YTiO3 single crystals
    (2009) Yordanov, Petar; Keimer, Bernhard (Prof. Dr.)
    The first two sections of Chapter 1 give a general overview of the research topics and experimental methods discussed in the thesis. Further on, in Chapter 2, some of the most important characteristics and mechanisms underlying the physics of transition metal oxides are presented. As the experimental part of the thesis includes studies on manganites and titanates, these two classes of compounds are exemplified in the exposition of Chapter 2. Several recent works in the emerging research field of transition metal oxide interfaces and superlattices are also discussed along with a brief introduction in x-ray spectroscopic methods with synchrotron radiation. Chapter 3 introduces the principles of optical spectroscopy and the simplest models for dielectric function, i.e., Lorentz oscillator and Drude dielectric function. The following Chapter 4 introduces two of the experimental techniques in optical spectroscopy, reflectance and spectroscopic ellipsometry. Further on, we describe the design of a new home-built apparatus for near-normal reflectance with high magnetic fields. Several critical technical details and findings during the assembling process are also discussed. Chapter 5 represents a comprehensive experimental spectroscopic study of a prototypical superlattice system made from an antiferromagnetic insulator CaMnO3 and a paramagnetic metal CaRuO3. The resulting interface ferromagnetic state was closely investigated by means of optical spectroscopy as well as by soft x-ray scattering and absorption methods. This study led us to the conclusion that magnetic bound states, i.e. magnetic polarons, have to be considered in the description of this SL system. Chapter 6 describes a polarized far infrared reflectance study with high magnetic field on the ferromagnetic Mott insulator YTiO3, single crystals. All 25 infrared-active phonon modes were observed. The temperature and magnetic-field dependence of the phonon modes revealed a weak spin-phonon coupling in YTiO3 and largely extended temperature range (up to TM ~ 80 - 100K), for the field-induced effects on the oscillator parameters. This later observation, uncovered short-range magnetic order state which remains even at temperatures as high as three times the temperature of the actual ferromagnetic transition of Tc ~ 30K. While a quantitative theoretical description of these data is thus far not available, they point to a complex interplay between spin, orbital, and lattice degrees of freedom due to the near-degeneracy of the Ti t2g orbitals in YTiO3.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart