Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Zechmeister, Christoph"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Computational fiber architecture : co-design of large-scale, load-adapted fiber composite building components for robotic pre-fabrication
    (Stuttgart : Institute for Computational Design and Construction, University of Stuttgart, 2023) Zechmeister, Christoph; Menges, Achim (Prof.)
    The architecture, engineering, and construction sectors are encountering major challenges in delivering livable and affordable environments in light of current demographic shifts and environmental changes. Digital technologies provide promising solutions, disrupting the way to design, construct, and experience physical space. Their implementation demands rethinking design, evaluation, and materialization to leverage material capacities propelled by computational design and numerical manufacturing. Coreless filament winding extends industrial processes to produce lightweight, material-efficient building parts with minimal formwork. However, it creates additional complexity for design and engineering, as it derives its formative capacity from interacting fiber rovings. This research presents a consolidated methodology to co-design coreless wound fiber composite building components for robotic prefabrication based on four main methods. Concurrent design and evaluation of fiber components are investigated using a feedback-based computational method and implemented using multi-scalar digital-physical design and evaluation toolsets. To increase sustainability, methods and toolsets are extended allowing for the replacement of petrochemical materials with bio-based alternatives. To implement the methods at a larger scale, a computational co-design framework is introduced, reconsidering team compositions and integrating interdisciplinary experts deep into design and evaluation workflows. As Co-design relies on the concurrent evolution of involved disciplines, interdisciplinary data sets are analyzed and interrelated, serving as a base for reciprocal feedback between computational design, engineering, and fabrication to increase process reliability, enable future reduction of material safety factors, and further increase material efficiency and sustainability. The methods are demonstrated by three full-scale building demonstrators, exhibiting different fibrous building systems. The BUGA Fiber Pavilion, Maison Fibre, and the livMatS Pavilion illustrate how concurrent multidisciplinary innovation challenges conventional ways of design and materialization. Computation acts as an interface between digital and physical realms, and material capacities become primary drivers in the generation of architectural form, paving the way for sustainable, material-efficient computational fiber architecture.
  • Thumbnail Image
    ItemOpen Access
    Data processing, analysis, and evaluation methods for co-design of coreless filament-wound building systems
    (2023) Gil Pérez, Marta; Mindermann, Pascal; Zechmeister, Christoph; Forster, David; Guo, Yanan; Hügle, Sebastian; Kannenberg, Fabian; Balangé, Laura; Schwieger, Volker; Middendorf, Peter; Bischoff, Manfred; Menges, Achim; Gresser, Götz T.; Knippers, Jan
  • Thumbnail Image
    ItemOpen Access
    Extension of computational co-design methods for modular, prefabricated composite building components using bio-based material systems
    (2023) Zechmeister, Christoph; Gil Pérez, Marta; Dambrosio, Niccolo; Knippers, Jan; Menges, Achim
    Robotic coreless filament winding using alternative material systems based on natural fibers and bio-based resin systems offers possible solutions to the productivity and sustainability challenges of the building and construction sector. Their application in modular, prefabricated structures allows for material-efficient and fast production under tightly controlled conditions leading to high-quality building parts with minimal production waste. Plant fibers made of flax or hemp have high stiffness and strength values and their production consumes less non-renewable energy than glass or carbon fibers. However, the introduction of natural material systems increases uncertainties in structural performance and fabrication parameters. The development process of coreless wound composite parts must thus be approached from the bottom up, treating the material system as an integral part of design and evaluation. Existing design and fabrication methods, as well as equipment, are adjusted to emphasize material aspects throughout the development, increasing the importance of material characterization and scalability evaluation. The reciprocity of material characterization and the fabrication process is highlighted and contributes to a non-linear, cyclical workflow. The implementation of extensions and adaptations are showcased in the development of the livMatS pavilion, a first attempt at coreless filament winding using natural material systems in architecture.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart