Browsing by Author "Zhang, Hongli"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access The Bacteroidetes Aequorivita sp. and Kaistella jeonii produce promiscuous esterases with PET-hydrolyzing activity(2022) Zhang, Hongli; Perez-Garcia, Pablo; Dierkes, Robert F.; Applegate, Violetta; Schumacher, Julia; Chibani, Cynthia Maria; Sternagel, Stefanie; Preuss, Lena; Weigert, Sebastian; Schmeisser, Christel; Danso, Dominik; Pleiss, Juergen; Almeida, Alexandre; Höcker, Birte; Hallam, Steven J.; Schmitz, Ruth A.; Smits, Sander H. J.; Chow, Jennifer; Streit, Wolfgang R.Certain members of the Actinobacteria and Proteobacteria are known to degrade polyethylene terephthalate (PET). Here, we describe the first functional PET-active enzymes from the Bacteroidetes phylum. Using a PETase-specific Hidden-Markov-Model- (HMM-) based search algorithm, we identified several PETase candidates from Flavobacteriaceae and Porphyromonadaceae. Among them, two promiscuous and cold-active esterases derived from Aequorivita sp. (PET27) and Kaistella jeonii (PET30) showed depolymerizing activity on polycaprolactone (PCL), amorphous PET foil and on the polyester polyurethane Impranil® DLN. PET27 is a 37.8 kDa enzyme that released an average of 174.4 nmol terephthalic acid (TPA) after 120 h at 30°C from a 7 mg PET foil platelet in a 200 μl reaction volume, 38-times more than PET30 (37.4 kDa) released under the same conditions. The crystal structure of PET30 without its C-terminal Por-domain (PET30ΔPorC) was solved at 2.1 Å and displays high structural similarity to the IsPETase. PET30 shows a Phe-Met-Tyr substrate binding motif, which seems to be a unique feature, as IsPETase, LCC and PET2 all contain Tyr-Met-Trp binding residues, while PET27 possesses a Phe-Met-Trp motif that is identical to Cut190. Microscopic analyses showed that K. jeonii cells are indeed able to bind on and colonize PET surfaces after a few days of incubation. Homologs of PET27 and PET30 were detected in metagenomes, predominantly aquatic habitats, encompassing a wide range of different global climate zones and suggesting a hitherto unknown influence of this bacterial phylum on man-made polymer degradation.Item Open Access Plastics degradation by hydrolytic enzymes : the Plastics-Active Enzymes Database - PAZy(2022) Buchholz, Patrick C. F.; Feuerriegel, Golo; Zhang, Hongli; Perez‐Garcia, Pablo; Nover, Lena‐Luisa; Chow, Jennifer; Streit, Wolfgang R.; Pleiss, JürgenPetroleum‐based plastics are durable and accumulate in all ecological niches. Knowledge on enzymatic degradation is sparse. Today, less than 50 verified plastics‐active enzymes are known. First examples of enzymes acting on the polymers polyethylene terephthalate (PET) and polyurethane (PUR) have been reported together with a detailed biochemical and structural description. Furthermore, very few polyamide (PA) oligomer active enzymes are known. In this article, the current known enzymes acting on the synthetic polymers PET and PUR are briefly summarized, their published activity data were collected and integrated into a comprehensive open access database. The Plastics‐Active Enzymes Database (PAZy) represents an inventory of known and experimentally verified enzymes that act on synthetic fossil fuel‐based polymers. Almost 3000 homologs of PET‐active enzymes were identified by profile hidden Markov models. Over 2000 homologs of PUR‐active enzymes were identified by BLAST. Based on multiple sequence alignments, conservation analysis identified the most conserved amino acids, and sequence motifs for PET‐ and PUR‐active enzymes were derived.