Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Zhang, Lu"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Radargrammetric DSM generation by semi-global matching and evaluation of penalty functions
    (2022) Wang, Jinghui; Gong, Ke; Balz, Timo; Haala, Norbert; Sörgel, Uwe; Zhang, Lu; Liao, Mingsheng
    Radargrammetry is a useful approach to generate Digital Surface Models (DSMs) and an alternative to InSAR techniques that are subject to temporal or atmospheric decorrelation. Stereo image matching in radargrammetry refers to the process of determining homologous points in two images. The performance of image matching influences the final quality of DSM used for spatial-temporal analysis of landscapes and terrain. In SAR image matching, local matching methods are commonly used but usually produce sparse and inaccurate homologous points adding ambiguity to final products; global or semi-global matching methods are seldom applied even though more accurate and dense homologous points can be yielded. To fill this gap, we propose a hierarchical semi-global matching (SGM) pipeline to reconstruct DSMs in forested and mountainous regions using stereo TerraSAR-X images. In addition, three penalty functions were implemented in the pipeline and evaluated for effectiveness. To make accuracy and efficiency comparisons between our SGM dense matching method and the local matching method, the normalized cross-correlation (NCC) local matching method was also applied to generate DSMs using the same test data. The accuracy of radargrammetric DSMs was validated against an airborne photogrammetric reference DSM and compared with the accuracy of NASA’s 30 m SRTM DEM. The results show the SGM pipeline produces DSMs with height accuracy and computing efficiency that exceeds the SRTM DEM and NCC-derived DSMs. The penalty function adopting the Canny edge detector yields a higher vertical precision than the other two evaluated penalty functions. SGM is a powerful and efficient tool to produce high-quality DSMs using stereo Spaceborne SAR images.
  • Thumbnail Image
    ItemOpen Access
    Three- and four-dimensional topographic measurement and validation
    (2021) Rocca, Fabio; Li, Deren; Tebaldini, Stefano; Liao, Mingsheng; Zhang, Lu; Lombardini, Fabrizio; Balz, Timo; Haala, Norbert; Ding, Xiaoli; Hanssen, Ramon
    This paper reports on the activities carried out in the context of “Dragon project 32278: Three- and Four-Dimensional Topographic Measurement and Validation”. The research work was split into three subprojects and encompassed several activities to deliver accurate characterization of targets on land surfaces and deepen the current knowledge on the exploitation of Synthetic Aperture Radar (SAR) data. The goal of Subproject 1 was to validate topographic mapping accuracy of various ESA, TPM, and Chinese satellite system on test sites in the EU and China; define and improve validation methodologies for topographic mapping; and develop and setup test sites for the validation of different surface motion estimation techniques. Subproject 2 focused on the specific case of spatially and temporally decorrelating targets by using multi-baseline interferometric (InSAR) and tomographic (TomoSAR) SAR processing. Research on InSAR led to the development of robust retrieval techniques to estimate target displacement over time. Research on TomoSAR was focused on testing or defining new processing methods for high-resolution 3D imaging of the interior of forests and glaciers and the characterization of their temporal behavior. Subproject 3 was focused on near-real-time motion estimation, considering efficient algorithms for the digestion of new acquisitions and for changes in problem parameterization.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart