Browsing by Author "Zschieschang, Ute"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Nearly diffraction limited FTIR mapping using an ultrastable broadband femtosecond laser tunable from 1.33 to 8 µm(2017) Mörz, Florian; Semenyshyn, Rostyslav; Steinle, Tobias; Neubrech, Frank; Zschieschang, Ute; Klauk, Hagen; Steinmann, Andy; Giessen, HaraldMicro-Fourier-transform infrared (FTIR) spectroscopy is a widespread technique that enables broadband measurements of infrared active molecular vibrations at high sensitivity. SiC globars are often applied as light sources in tabletop systems, typically covering a spectral range from about 1 to 20 µm (10 000 - 500 cm−1) in FTIR spectrometers. However, measuring sample areas below 40x40 µm2 requires very long integration times due to their inherently low brilliance. This hampers the detection of ultrasmall samples, such as minute amounts of molecules or single nanoparticles. In this publication we extend the current limits of FTIR spectroscopy in terms of measurable sample areas, detection limit and speed by utilizing a broadband, tabletop laser system with MHz repetition rate and femtosecond pulse duration that covers the spectral region between 1250 - 7520 cm−1 (1.33 - 8 µm). We demonstrate mapping of a 150x150 µm2 sample of 100 nm thick molecule layers at 1430 cm−1 (7 µm) with 10x10 µm2 spatial resolution and a scan speed of 3.5 µm/sec. Compared to a similar globar measurement an order of magnitude lower noise is achieved, due to an excellent long-term wavelength and power stability, as well as an orders of magnitude higher brilliance.Item Open Access Optimizing the plasma oxidation of aluminum gate electrodes for ultrathin gate oxides in organic transistors(2021) Geiger, Michael; Hagel, Marion; Reindl, Thomas; Weis, Jürgen; Weitz, R. Thomas; Solodenko, Helena; Schmitz, Guido; Zschieschang, Ute; Klauk, Hagen; Acharya, RachanaA critical requirement for the application of organic thin-film transistors (TFTs) in mobile or wearable applications is low-voltage operation, which can be achieved by employing ultrathin, high-capacitance gate dielectrics. One option is a hybrid dielectric composed of a thin film of aluminum oxide and a molecular self-assembled monolayer in which the aluminum oxide is formed by exposure of the surface of the aluminum gate electrode to a radio-frequency-generated oxygen plasma. This work investigates how the properties of such dielectrics are affected by the plasma power and the duration of the plasma exposure. For various combinations of plasma power and duration, the thickness and the capacitance of the dielectrics, the leakage-current density through the dielectrics, and the current–voltage characteristics of organic TFTs in which these dielectrics serve as the gate insulator have been evaluated. The influence of the plasma parameters on the surface properties of the dielectrics, the thin-film morphology of the vacuum-deposited organic-semiconductor films, and the resulting TFT characteristics has also been investigated.