Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-10220
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMüller, Kolja-
dc.contributor.authorCheng, Po Wen-
dc.date.accessioned2019-01-25T10:39:58Z-
dc.date.available2019-01-25T10:39:58Z-
dc.date.issued2018de
dc.identifier.isbn978-0-7918-5131-9-
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10237-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-102375de
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10220-
dc.description.abstractFatigue analysis for floating wind turbines poses a novel challenge to calculation workflows if a probabilistic load environment is to be considered. The increased complexity of the structure itself as well as its interaction with the environment require a coupled and more detailed analysis with respect to resolution of environmental conditions compared to fixed bottom systems. Different approaches to address the computing challenge for floating turbines are possible to support engineering judgement and have been investigated in the past, with conservative binning on the one end of the accuracy scale and computation intensive Monte Carlo simulations on the other end. This study investigates the feasibility of regression based surrogate models based on radial basis functions. The investigation performed here is aligned with work performed in the H2020 project LIFES50+. Consequently, the considered system is the DTU 10MW Reference Wind Turbine installed on the LIFES50+ OO-Star Wind Floater Semi 10MW. The site under investigation is the LIFES50+ Site B (Gulf of Maine) medium severity representative site. Results show a similar convergence of lifetime fatigue load prediction as with Monte Carlo simulations indicating that this technique may be an alternative if a response model of the considered system is of interest. This may be interesting if damage loading is to be calculated at a different site and if a classification of met-ocean conditions is available.en
dc.language.isoende
dc.relationeu-repo/grantAgreement/EC/H2020/640741de
dc.relation.uridoi:10.1115/OMAE2018-78219de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleA surrogate modeling approach for fatigue damage assessment of floating wind turbinesen
dc.typeconferenceObjectde
ubs.fakultaetLuft- und Raumfahrttechnik und Geodäsiede
ubs.institutInstitut für Flugzeugbaude
ubs.konferenznameASME International Conference on Ocean, Offshore and Arctic Engineering (37th, 2018, Madrid)de
ubs.publikation.noppnyesde
ubs.publikation.seiten12de
ubs.publikation.sourceProceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering : OMAE 2018, June 17-22, 2018, Madrid, Spain. Vol. 10 : Ocean renewable energy. ASME, 2018. - ISBN 978-0-7918-5131-9, no. OMAE2018-78219, S. V010T09A065de
ubs.publikation.typKonferenzbeitragde
Appears in Collections:06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Files in This Item:
File Description SizeFormat 
OMAE2018-78219.pdf1,87 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.