Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-10427
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorKeip, Marc-André (Prof. Dr.-Ing.)-
dc.contributor.authorVallicotti, Daniel-
dc.date.accessioned2019-06-27T08:21:40Z-
dc.date.available2019-06-27T08:21:40Z-
dc.date.issued2019de
dc.identifier.isbn978-3-937859-23-1-
dc.identifier.other1668038714-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-104447de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10444-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10427-
dc.description.abstractWith the rapid advances in micro-electronics and data-processing, multiscale material models can be incorporated in the development process of innovative functional materials. In this work, the broad field of magneto-electro-mechanically coupled devices is in focus. Here, the interactions of electric, magnetic and mechanical fields give rise to smart materials that are used as sensors and actuators in industrial applications. This work provides the basis for multiscale investigations of magneto-electro-mechanics both in a phenomenological and micro-mechanically motivated setting. Starting from a canonical variational principle, a numerically convenient mixed formulation of finite magneto-electro-mechanics is developed. It serves as a basis for multiscale structural and material stability analyses in a phenomenological material modeling framework. In a next step, phase-field models are employed to focus on the evolution and motion of electric and magnetic domains in the micro-structure. The related interactions of particles and their influence on the overall macroscopic deformation states are investigated.Starting from a canonical variational principle, a numerically convenient mixed formulation of finite magneto-electro-mechanics is developed. It serves as a basis for multiscale structural and material stability analyses in a phenomenological material modeling framework. In a next step, phase-field models are employed to focus on the evolution and motion of electric and magnetic domains in the micro-structure. The related interactions of particles and their influence on the overall macroscopic deformation states are investigated.en
dc.language.isoende
dc.publisherStuttgart : Institute of Applied Mechanicsde
dc.relation.ispartofseriesPublication series of the Institute of Applied Mechanics (IAM);2-
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleMagneto-electro-mechanical coupling phenomena across multiple length scales : variational framework and stability analysisen
dc.typedoctoralThesisde
ubs.dateAccepted2019-01-29-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.publikation.seitenviii, 192de
ubs.publikation.typDissertationde
ubs.schriftenreihe.namePublication series of the Institute of Applied Mechanics (IAM)de
ubs.thesis.grantorStuttgart Research Centre for Simulation Technology (SRC SimTech)de
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Dissertation_DVallicotti.pdf21,09 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.