Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-10876
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorWochner, Isabell-
dc.contributor.authorDriess, Danny-
dc.contributor.authorZimmermann, Heiko-
dc.contributor.authorHäufle, Daniel F. B.-
dc.contributor.authorToussaint, Marc-
dc.contributor.authorSchmitt, Syn-
dc.date.accessioned2020-06-04T12:31:19Z-
dc.date.available2020-06-04T12:31:19Z-
dc.date.issued2020de
dc.identifier.issn1662-5188-
dc.identifier.other1700326236-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-108930de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10893-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10876-
dc.description.abstractHuman arm movements are highly stereotypical under a large variety of experimental conditions. This is striking due to the high redundancy of the human musculoskeletal system, which in principle allows many possible trajectories toward a goal. Many researchers hypothesize that through evolution, learning, and adaption, the human system has developed optimal control strategies to select between these possibilities. Various optimality principles were proposed in the literature that reproduce human-like trajectories in certain conditions. However, these studies often focus on a single cost function and use simple torque-driven models of motion generation, which are not consistent with human muscle-actuated motion. The underlying structure of our human system, with the use of muscle dynamics in interaction with the control principles, might have a significant influence on what optimality principles best model human motion. To investigate this hypothesis, we consider a point-to-manifold reaching task that leaves the target underdetermined. Given hypothesized motion objectives, the control input is generated using Bayesian optimization, which is a machine learning based method that trades-off exploitation and exploration. Using numerical simulations with Hill-type muscles, we show that a combination of optimality principles best predicts human point-to-manifold reaching when accounting for the muscle dynamics.en
dc.language.isoende
dc.relation.uridoi:10.3389/fncom.2020.00038de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc500de
dc.subject.ddc510de
dc.subject.ddc530de
dc.subject.ddc570de
dc.subject.ddc620de
dc.titleOptimality principles in human point-to-manifold reaching accounting for muscle dynamicsen
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Modellierung und Simulation Biomechanischer Systemede
ubs.institutInstitut für Parallele und Verteilte Systemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten12, 5, 3, 5de
ubs.publikation.sourceFrontiers in computational neuroscience 14 (2020), article 38de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
OptimalityPrinciples_Wochner.pdfArticle586,91 kBAdobe PDFÖffnen/Anzeigen
OptimalityPrinciples_Wochner_Datasheet1.pdfSupplementary material 1542,13 kBAdobe PDFÖffnen/Anzeigen
OptimalityPrinciples_Wochner_Datasheet2.pdfSupplementary material 2182,46 kBAdobe PDFÖffnen/Anzeigen
OptimalityPrinciples_Wochner_Datasheet3.pdfSupplementary material 3203,78 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.