Please use this identifier to cite or link to this item:
http://dx.doi.org/10.18419/opus-10893
Authors: | Weitbrecht, Felix |
Title: | On the number of Delaunay Triangles occurring in all contiguous subsequences |
Issue Date: | 2020 |
metadata.ubs.publikation.typ: | Abschlussarbeit (Master) |
metadata.ubs.publikation.seiten: | 19 |
URI: | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-109100 http://elib.uni-stuttgart.de/handle/11682/10910 http://dx.doi.org/10.18419/opus-10893 |
Abstract: | Given an ordered sequence of points P = {p1, p2, ..., pn}, we consider all contiguous subsequences Pi,j := {pi, ..., pj} of P and the set T of distinct Delaunay triangles within their Delaunay triangulations. For arbitrary point sets and orderings, we give an O(n^2) bound on |T|. Furthermore, for arbitrary point sets in uniformly random order, we give two proofs of a Θ(n log n) bound on E[|T|]. |
Appears in Collections: | 05 Fakultät Informatik, Elektrotechnik und Informationstechnik |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Masterarbeit.pdf | 226,91 kB | Adobe PDF | View/Open |
Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.