Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-10893
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWeitbrecht, Felix-
dc.date.accessioned2020-06-19T12:42:11Z-
dc.date.available2020-06-19T12:42:11Z-
dc.date.issued2020de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10910-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-109100de
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10893-
dc.description.abstractGiven an ordered sequence of points P = {p1, p2, ..., pn}, we consider all contiguous subsequences Pi,j := {pi, ..., pj} of P and the set T of distinct Delaunay triangles within their Delaunay triangulations. For arbitrary point sets and orderings, we give an O(n^2) bound on |T|. Furthermore, for arbitrary point sets in uniformly random order, we give two proofs of a Θ(n log n) bound on E[|T|].en
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleOn the number of Delaunay Triangles occurring in all contiguous subsequenesen
dc.typemasterThesisde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Formale Methoden der Informatikde
ubs.publikation.noppnyesde
ubs.publikation.seiten19de
ubs.publikation.typAbschlussarbeit (Master)de
Appears in Collections:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Files in This Item:
File Description SizeFormat 
Masterarbeit.pdf226,91 kBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.