Please use this identifier to cite or link to this item:
Authors: Panzer, Florian
Shishova, Elizaveta
Werz, Martin
Weihe, Stefan
Eberhard, Peter
Schmauder, Siegfried
Title: A physically based material model for the simulation of friction stir welding
Issue Date: 2020 Zeitschriftenartikel 603-611 Materials testing 62 (2020), S. 603-611
ISSN: 0025-5300
Abstract: A physically based material model, taking into account the interdependence of material microstructure and yield strength, is presented for an Al 5182 series aluminum alloy for the simulation of friction stir welding using continuum mechanics approaches. A microstructure evolution equation considering dislocation density and grain size is used in conjunction with a description of yield stress. In order to fit experimental stress-strain curves, obtained from compression tests at various strain rates and temperatures, phenomenological relationships are developed for some of the model parameters. The material model is implemented in smoothed particle hydrodynamic research code as well as in the commercial finite element code Abaqus. Simulations for various strain rates and temperatures were performed and compared with experimental results as well as between the two discretization methods in order to verify the material model and the implementation. Simulations provide not only an accurate approximation of stress based on temperature, strain rate, and strain but also an improved insight into the microstructural evolution of the material.
Appears in Collections:04 Fakultät Energie-, Verfahrens- und Biotechnik

Files in This Item:
File Description SizeFormat 
FSW_SPH_Matmodell_MPA_IMWF_ITM.pdf527,16 kBAdobe PDFView/Open

Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.