Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-10897
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorPanzer, Florian-
dc.contributor.authorShishova, Elizaveta-
dc.contributor.authorWerz, Martin-
dc.contributor.authorWeihe, Stefan-
dc.contributor.authorEberhard, Peter-
dc.contributor.authorSchmauder, Siegfried-
dc.date.accessioned2020-06-26T13:56:10Z-
dc.date.available2020-06-26T13:56:10Z-
dc.date.issued2020de
dc.identifier.issn0025-5300-
dc.identifier.other1761653555-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-109145de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10914-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10897-
dc.description.abstractA physically based material model, taking into account the interdependence of material microstructure and yield strength, is presented for an Al 5182 series aluminum alloy for the simulation of friction stir welding using continuum mechanics approaches. A microstructure evolution equation considering dislocation density and grain size is used in conjunction with a description of yield stress. In order to fit experimental stress-strain curves, obtained from compression tests at various strain rates and temperatures, phenomenological relationships are developed for some of the model parameters. The material model is implemented in smoothed particle hydrodynamic research code as well as in the commercial finite element code Abaqus. Simulations for various strain rates and temperatures were performed and compared with experimental results as well as between the two discretization methods in order to verify the material model and the implementation. Simulations provide not only an accurate approximation of stress based on temperature, strain rate, and strain but also an improved insight into the microstructural evolution of the material.en
dc.language.isoende
dc.relation.uridoi:10.3139/120.111523de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.subject.ddc670de
dc.titleA physically based material model for the simulation of friction stir weldingen
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Materialprüfung, Werkstoffkunde und Festigkeitslehrede
ubs.institutInstitut für Technische und Numerische Mechanikde
ubs.institutMaterialprüfungsanstalt Universität Stuttgart (MPA Stuttgart, Otto-Graf-Institut (FMPA))de
ubs.publikation.seiten603-611de
ubs.publikation.sourceMaterials testing 62 (2020), S. 603-611de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
FSW_SPH_Matmodell_MPA_IMWF_ITM.pdf527,16 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.