Quantenunterstütztes Clustering mit hybriden neuronalen Netzen
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Maschinelles Lernen und Quantencomputer sind zwei aktuelle Forschungsthemen, die großes Potenzial haben. Aktuell wird erforscht, wie diese beiden Gebiete kombiniert werden können, um voneinander zu profitieren. In diesen Bereich fällt die vorliegende Arbeit. In dieser Arbeit wird untersucht, ob hybride neuronale Netze genutzt werden können, um die Ergebnisse von Clustering-Algorithmen zu verbessern. Hierzu wird auf den Daten Dimensionsreduktion mit hybriden Autoencodern durchgeführt, bevor die Daten den Clustering-Algorithmen übergeben werden. Als Ergebnis konnte festgestellt werden, dass für bestimmte Datensätze Clustering-Algorithmen bessere Cluster erstellen können, wenn Dimensionsreduktion mit hybriden Autoencodern durchgeführt wurde, anstatt mit klassischen Autoencodern oder PCA.