Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-11734
Autor(en): Saemian, Peyman
Titel: Characterizing storage-based drought using satellite gravimetry
Erscheinungsdatum: 2021
Dokumentart: Abschlussarbeit (Master)
Seiten: XXII, 44
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-117518
http://elib.uni-stuttgart.de/handle/11682/11751
http://dx.doi.org/10.18419/opus-11734
Zusammenfassung: Drought is a complex phenomenon leading to a wide range of socio-economic, environmental, and political problems. The storage-based drought which represents the persistent lack of water in different levels of the Total Water Storage (TWS) from deep groundwater to surface water plays a vital role in proactive drought management. Despite its necessity, TWS could not be monitored due to the lack of consistent measurements from regional to continental scale. Since its launch in 2002, the Gravity Recovery and Climate Experiment (grace) mission and its successor GRACE Follow-On have provided unique observations of the TWS change at the global scale. In this study, we have investigated characterizing the storage-based drought at the global scale using GRACE measurements. To this end, the Equivalent Water Height (EWH) has been retrieved from GRACE level 02 solutions. We have addressed the short record of GRACE observations in capturing the full hydroclimate variations. Based on our analysis, regions with a considerable direct human intervention like overexploitation of groundwater in the Middle East, regions that were affected by climate change like ice-melting over the Mackenzie river basin in Canada, or extreme precipitation events over the Ob river basin in the boreal regions are more sensitive to the length of ewh time series. Due to the crucial need for a long (at least 30 years) record of EWH, we have extended GRACE observations back to 1980 using an ensemble of models. The extended dataset has been developed using a pixel-wise selection of best-performed models among global hydrological models, land surface models, and atmospheric reanalysis models. The extended dataset has been used in the study for drought characterization over the grac period. The proposed Storage-based Drought Index (SDI) successfully captured the documented drought events globally in terms of intensity and spatio-temporal distribution. Moreover, the analysis of SDI over the five classes of drought from D0 as abnormally dry to D4 as exceptional drought showed that most regions have suffered at least once from the storage-based drought over the GRACE period (2002–2016). Besides, the map of exceptional drought frequency highlights regions with significant groundwater extraction like California, the Middle East, and north of India and regions with exceptional shifts in the precipitation and temperature pattern and intensity like Amazon in South America and China. Finally, our comparison of SDI with three most widely used drought indices namely the Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the Palmer Drought Severity Index (PDSI) reveals that despite their high correlation over climate-driven regions, these indices failed to characterize anthropogenic drought events, especially over regions with considerable groundwater withdraws. The study allows for a more informative storage-based drought with a more robust climatology as the reference, thus enabling a more realistic risk assessment.
Enthalten in den Sammlungen:06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
MasterThesis_PeymanSaemian.pdf22,47 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.