Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-11798
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorSchulte, Miriam (Prof. Dr.)-
dc.contributor.authorMaier, Benjamin-
dc.date.accessioned2021-11-26T12:15:53Z-
dc.date.available2021-11-26T12:15:53Z-
dc.date.issued2021de
dc.identifier.other1779617569-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-118152de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11815-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-11798-
dc.description.abstractThe human neuromuscular system consisting of skeletal muscles and neural circuits is a complex system that is not yet fully understood. Surface electromyography (EMG) can be used to study muscle behavior from the outside. Computer simulations with detailed biophysical models provide a non-invasive tool to interpret EMG signals and gain new insights into the system. The numerical solution of such multi-scale models imposes high computational work loads, which restricts their application to short simulation time spans or coarse resolutions. We tackled this challenge by providing scalable software employing instruction-level and task-level parallelism, suitable numerical methods and efficient data handling. We implemented a comprehensive, state-of-the-art, multi-scale multi-physics model framework that can simulate surface EMG signals and muscle contraction as a result of neuromuscular stimulation. This work describes the model framework and its numerical discretization, develops new algorithms for mesh generation and parallelization, covers the use and implementation of our software OpenDiHu, and evaluates its computational performance in numerous use cases. We obtain a speedup of several hundred compared to a baseline solver from the literature and demonstrate, that our distributed-memory parallelization and the use of High Performance Computing resources enables us to simulate muscular surface EMG of the biceps brachii muscle with realistic muscle fiber counts of several hundred thousands. We find that certain model effects are only visible with such high resolution. In conclusion, our software contributes to more realistic simulations of the neuromuscular system and provides a tool for applied researchers to complement in vivo experiments with in-silico studies. It can serve as a building block to set up comprehensive models for more organs in the musculoskeletal system.en
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleScalable biophysical simulations of the neuromuscular systemen
dc.typedoctoralThesisde
ubs.dateAccepted2021-06-22-
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Parallele und Verteilte Systemede
ubs.publikation.seitenx, 520de
ubs.publikation.typDissertationde
ubs.thesis.grantorStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
Enthalten in den Sammlungen:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Maier2021_Scalable_Biophysical_Simulations_of_the_Neuromuscular_System.pdf66,86 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.