Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12410
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorRöhrle, Oliver (Prof., PhD)-
dc.contributor.authorSchneider, Oliver-
dc.date.accessioned2022-10-06T14:47:52Z-
dc.date.available2022-10-06T14:47:52Z-
dc.date.issued2022de
dc.identifier.isbn978-3-946412-10-6-
dc.identifier.other1818162997-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-124292de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12429-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12410-
dc.description.abstractOver the last decade Organ-on-Chip (OoC) emerged as disruptive technology combining aspects of microfluidics and tissue engineering. OoCs culture human tissues in tailored microenvironments under microfluidic perfusion, yielding an unprecedented recapitulation of human physiology. So far, most systems predominantly focus on physiological tissue generation. However, it is crucial to integrate stimulation and readout capabilities, leveraging OoCs from bare tissue generation tools to advanced integrated experimental platforms. This thesis focuses on the development and characterization of novel microphysiological systems to probe and actuate tissues on the microscale. We present two Heart-on-Chip platforms enabling the generation of aligned cardiac muscle fibers and investigate the integration of force and O2 sensing as well as electrical stimulation capabilities. Furthermore, we introduce and characterize two OoCs enabling the precise delivery of biomechanical stretch and compression stimuli. All in all, the systems developed in the framework of this thesis provide a flexible toolkit amenable for disease modeling or personalized medicine, offering advanced experimental capabilities for manipulating and interrogating integrated tissues.en
dc.language.isoende
dc.publisherStuttgart : Institute for Modelling and Simulation of Biomechanical Systems, Chair of Continuum Biomechanics and Mechanobiology, University of Stuttgartde
dc.relation.ispartofseriesCBM;11-
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleGeneration, probing, and biophysical stimulation of human microtissues in microfluidic Organ-on-Chip platformsen
dc.typedoctoralThesisde
ubs.dateAccepted2022-07-12-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.institutInstitut für Modellierung und Simulation Biomechanischer Systemede
ubs.publikation.seitenxii, 190de
ubs.publikation.typDissertationde
ubs.schriftenreihe.nameCBMde
ubs.thesis.grantorBau- und Umweltingenieurwissenschaftende
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
appendix.zipAppendix15,46 MBUnknownÖffnen/Anzeigen
CBM_11_Schneider.pdfThesis21,82 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.