Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.18419/opus-12748
Autor(en): | Weder, Benjamin Barzen, Johanna Leymann, Frank Salm, Marie |
Titel: | Automated quantum hardware selection for quantum workflows |
Erscheinungsdatum: | 2021 |
Dokumentart: | Zeitschriftenartikel |
Seiten: | 18 |
Erschienen in: | Electronics 10 (2021), No. 984 |
URI: | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-127672 http://elib.uni-stuttgart.de/handle/11682/12767 http://dx.doi.org/10.18419/opus-12748 |
ISSN: | 2079-9292 |
Zusammenfassung: | The execution of a quantum algorithm typically requires various classical pre- and post-processing tasks. Hence, workflows are a promising means to orchestrate these tasks, benefiting from their reliability, robustness, and features, such as transactional processing. However, the implementations of the tasks may be very heterogeneous and they depend on the quantum hardware used to execute the quantum circuits of the algorithm. Additionally, today’s quantum computers are still restricted, which limits the size of the quantum circuits that can be executed. As the circuit size often depends on the input data of the algorithm, the selection of quantum hardware to execute a quantum circuit must be done at workflow runtime. However, modeling all possible alternative tasks would clutter the workflow model and require its adaptation whenever a new quantum computer or software tool is released. To overcome this problem, we introduce an approach to automatically select suitable quantum hardware for the execution of quantum circuits in workflows. Furthermore, it enables the dynamic adaptation of the workflows, depending on the selection at runtime based on reusable workflow fragments. We validate our approach with a prototypical implementation and a case study demonstrating the hardware selection for Simon’s algorithm. |
Enthalten in den Sammlungen: | 05 Fakultät Informatik, Elektrotechnik und Informationstechnik |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
electronics-10-00984-v2.pdf | 1,01 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons