Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.18419/opus-12827
Autor(en): | Felk, Dominique |
Titel: | Eigenschaften und Verfahren zur Fertigung von superhydrophoben Oberflächen zur Anwendung in der Medizin und Life Science |
Erscheinungsdatum: | 2021 |
Dokumentart: | Studienarbeit |
Seiten: | xvi, 83 |
URI: | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-128464 http://elib.uni-stuttgart.de/handle/11682/12846 http://dx.doi.org/10.18419/opus-12827 |
Zusammenfassung: | In dieser Studienarbeit werden die Eigenschaften, sowie die geometrische Gestalt von superhydrophoben Oberflächen anhand einer ausführlichen Literaturrecherche aufgezeigt. Wassertropfen nehmen auf superhydrophoben Oberflächen eine nahezu sphärische Gestalt an und rollen leicht von einer geneigten Oberflächen ab. Dabei nehmen die Wassertropfen etwaige Verschmutzungen mit. Diese reinigende Wirkung ist charakteristisch für den Lotus-Effekt, welcher physikalisch auf dem Vorhandensein des Cassie-Baxter Zustands beruht. So weisen superhydrophobe Oberflächen einen Kontaktwinkel θ0 von mindestens 150° auf. Aus dem großen Kontaktwinkel resultiert eine geringe Adhäsion der Oberfläche mit einem Wassertropfen. Dadurch gleitet der Tropfen bereits bei geringen Gleitwinkeln von kleiner als 10° von einer geneigten Ebene ab. Neben einem großen Kontakt- und einem kleinen Gleitwinkel weisen superhydrophobe Oberflächen eine Kontaktwinkelhysterese von kleiner als 5° auf. Außerdem bestehen die Oberflächen aus Materialien mit geringen Oberflächenenergien. Erzielbar ist der Lotus-Effekt durch eine Oberflächenmorphologie, die ein hohes Luftvolumen zwischen der Oberfläche und einem Wassertropfen einschließt. Dies ist möglich durch Strukturen im Größenbereich von einigen hundert Nanometern bis zu einigen zehn Mikrometern. Die Strukturen selbst müssen ein hohes Aspektverhältnis aufweisen, welches durch hierarchisch aufgebaute Strukturen erzielt werden kann. Außerdem werden in dieser Arbeit verschiedene Anwendungen aus dem Bereich der Medizin und der Life Science aufgeführt, die durch superhydrophobe Oberflächen ermöglicht werden. Beispielhafte Anwendungen sind superhydrophobe Textilwickel, welche eine Heilung bei Druckgeschwüren begünstigen sollen, oder eine kontrollierte in-vitro Freisetzung von Medikamenten. Die Literaturrecherche zeigt, dass die Herstellung von superhydrophoben Oberflächen auf Strukturen in Metall, Silizium und Kunststoff beruhen kann. So ist die Erzeugung von Strukturen in Metall und Silizium über konventionelle Fertigungsverfahren wie die Plasmabearbeitung (DRIE, ICP), das Tauchbad und die Laserbearbeitung möglich. Zur Erzeugung der Strukturen in Kunststoff eignet sich das Spritzgießen, das Formgießen und das Heißprägen. Für die stochastische Aufrauung der Kunststoffoberfläche eignet sich die Bearbeitung mit Plasma. Die am Institut für Mikrointegration der Universität Stuttgart (IFM) und Hahn-Schickard Gesellschaft Stuttgart (HS-S) vorhandenen Geräte ermöglichen grundsätzlich eine Herstellung der für superhydrophobe Oberflächen erforderlichen Größenordnungen. Dazu muss unter anderem untersucht werden, welche Anwendungen realisiert werden sollen und welche Medien in Kontakt mit der Oberfläche stehen werden. Darauf hin muss das Verhalten des Mediums mit verschiedenen Oberflächenmorphologien analysiert werden, um die am besten geeignete Struktur zu finden. |
Enthalten in den Sammlungen: | 07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
2021_Studienarbeit_Felk.pdf | 16,02 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.