Please use this identifier to cite or link to this item:
Authors: Ramirez-Diaz, Diego A.
Merino-Salomón, Adrián
Meyer, Fabian
Heymann, Michael
Rivas, Germán
Bramkamp, Marc
Schwille, Petra
Title: FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis
Issue Date: 2021 Zeitschriftenartikel 11 Nature communications 12 (2021), No. 3310
ISSN: 2041-1723
Abstract: FtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far, however, not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we design an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ filaments actively transform these tubes into spring-like structures, where GTPase activity promotes spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, the directional forces that FtsZ-YFP-mts rings exert upon GTP hydrolysis can be estimated to be in the pN range. They are sufficient to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls. We hypothesize that these forces result from torsional stress in a GTPase activity dependent manner.
Appears in Collections:04 Fakultät Energie-, Verfahrens- und Biotechnik

Files in This Item:
File Description SizeFormat 
s41467-021-23387-3.pdf6,21 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons