Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13096
Autor(en): Berger, Johannes
Titel: Scaling of an aviation hydrogen micromix injector design for industrial GT combustion applications
Erscheinungsdatum: 2021
Dokumentart: Zeitschriftenartikel
Seiten: 239-251
Erschienen in: Aerotecnica missili & spazio 100 (2021), S. 239-251
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-131157
http://elib.uni-stuttgart.de/handle/11682/13115
http://dx.doi.org/10.18419/opus-13096
ISSN: 0365-7442
2524-6968
Zusammenfassung: Decarbonising the energy grid through renewable energy requires a grid firming technology to harmonize supply and demand. Hydrogen-fired gas turbine power plants offer a closed loop by burning green hydrogen produced with excess power from renewable energy. Conventional dry low NOx (DLN) combustors have been optimized for strict emission limits. A higher flame temperature of hydrogen drives higher NOx emissions and faster flame speed alters the combustion behavior significantly. Micromix combustion offers potential for low NOx emissions and optimized conditions for hydrogen combustion. Many small channels, so-called airgates, accelerate the airflow followed by a jet-in-crossflow injection of hydrogen. This leads to short-diffusion flames following the principle of maximized mixing intensity and minimized mixing scales. This paper shows the challenges and the potential of an economical micromix application for an aero-derivative industrial gas turbine with a high-pressure ratio. A technology transfer based on the micromix combustion research in the ENABLEH2 project is carried out. The driving parameter for ground use adaption is an increased fuel orifice diameter from 0.3 mm to 1.0 mm to reduce cost and complexity. Increasing the fuel supply mass flow leads to larger flames and higher emissions. The impact was studied through RANS simulation and trends for key design parameters were shown. Increased velocity in the airgates leads to a higher pressure drop and reduced emissions through faster mixing. Altering the penetration depth shows potential for emission reduction without compromising on pressure loss. Two improved designs are found, and their performance is discussed.
Enthalten in den Sammlungen:06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s42496-021-00091-5.pdf2,19 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons