Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13139
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorSzentpály, László von-
dc.date.accessioned2023-06-12T14:24:17Z-
dc.date.available2023-06-12T14:24:17Z-
dc.date.issued2020de
dc.identifier.issn1432-881X-
dc.identifier.issn1432-2234-
dc.identifier.other1850678014-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-131581de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13158-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13139-
dc.description.abstractBond orders are attributed a new role in rationalizing the electronegativity equalization (ENE) and maximum hardness (MH) rules. The following rules and theorems are formulated for chemical species (atoms, groups, molecules), X, Y, XY, their ionization energies, I, electron affinities, A, electronegativity, χ = ½(I + A), and chemical hardness, η = ½ (I − A). Rule 1 Sanderson’s principle of electronegativity equalization is supported (individual deviations < 10%) by association reactions, X + Y → XY, if the ionic bond dissociation energies are equal, D (XY+) = D (XY−), or, equivalently, if the relative bond orders are equal, BOrel (XY+) = BOrel (XY−). Rule 2 Sanderson’s principle of electronegativity equalization is supported (individual deviations < 10%) by association reactions, X + Y → XY, if the formal bond orders, FBO, of the ions are equal, FBO (XY+) = FBO (XY−). Theorem 1 The electronegativity is not equalized by association reactions, X + Y → XY, if the formal bond orders of the ions differ, FBO (XY+) − FBO (XY−) ≠ 0. Theorem 2 The chemical hardness is increased by nonpolar bond formation, 2X → X2, if (and for atomic X: if and only if) the sum BOrel (X2+) + BOrel (X2−) < 2. Rule 3 The chemical hardness is decreased, thus the “maximum hardness principle” violated by association reactions, X + Y → XY, if (but not only if) BOrel (XY+) + BOrel (XY−) > 2. The theorems are proved, and the rules corroborated with the help of elementary thermochemical cycles according to the first law of thermodynamics. They place new conditions on the “structural principles” ENE and MH. The performances of different electronegativities and hardness scales are compared with respect to ENE and MH. The scales based on valence-state energies perform consistently better than scales based on ground-state energies. The present work provides the explanation for the order of magnitude better performance of valence-state ENE compared to that of the ground-state ENE. We here show by a new approach that the combination of several fuzzy concepts clarifies the situation and helps in defining the range of validity of rules and principles derived from such concepts.en
dc.description.sponsorshipProjekt DEALde
dc.language.isoende
dc.relation.uridoi:10.1007/s00214-020-2569-0de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc540de
dc.titleTheorems and rules connecting bond energy and bond order with electronegativity equalization and hardness maximizationen
dc.typearticlede
dc.date.updated2023-05-15T04:35:09Z-
ubs.fakultaetChemiede
ubs.institutInstitut für Theoretische Chemiede
ubs.publikation.seiten9de
ubs.publikation.sourceTheoretical chemistry accounts 139 (2020), No. 54de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:03 Fakultät Chemie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s00214-020-2569-0.pdf1,13 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons