Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13175
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorAuch, Marcus-
dc.contributor.authorKuthada, Timo-
dc.contributor.authorGiese, Sascha-
dc.contributor.authorWagner, Andreas-
dc.date.accessioned2023-06-17T08:56:30Z-
dc.date.available2023-06-17T08:56:30Z-
dc.date.issued2023de
dc.identifier.issn2313-0105-
dc.identifier.other185138152X-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-131947de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13194-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13175-
dc.description.abstractThis study investigates the influence of the considered Electric Equivalent Circuit Model (ECM) parameter dependencies and architectures on the predicted heat generation rate by using the Bernardi equation. For this purpose, the whole workflow, from the cell characterization tests to the cell parameter identification and finally validation studies, is examined on a cylindrical 5 Ah LG217000 Lithium-Ion-Battery (LIB) with a nickel manganese cobalt chemistry. Additionally, different test procedures are compared with respect to their result quality. For the parameter identification, a Matlab tool is developed enabling the user to generate all necessary ECMs in one run. The accuracy of the developed ECMs is evaluated by comparing voltage prediction of the experimental and simulation results for the highly dynamic World harmonized Light vehicle Test Cycle (WLTC) at different states of charges (SOCs) and ambient temperatures. The results show that parameter dependencies such as hysteresis and current are neglectable, if only the voltage results are compared. Considering the heat generation prediction, however, the neglection can result in mispredictions of up to 9% (current) or 22% (hysteresis) and hence should not be neglected. Concluding the voltage and heat generation results, this study recommends using a Dual Polarization (DP) or Thevenin ECM considering all parameter dependencies except for the charge/discharge current dependency for thermal modeling of LIBs.en
dc.description.sponsorshipGerman Research Foundationde
dc.language.isoende
dc.relation.uridoi:10.3390/batteries9050274de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleInfluence of lithium-ion-battery equivalent circuit model parameter dependencies and architectures on the predicted heat generation in real-life drive cyclesen
dc.typearticlede
dc.date.updated2023-06-07T08:39:05Z-
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.institutInstitut für Fahrzeugtechnik Stuttgartde
ubs.institutForschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS)de
ubs.publikation.seiten26de
ubs.publikation.sourceBatteries 9 (2023), No. 274de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
batteries-09-00274.pdf3,34 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons