Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13189
Autor(en): Ma, Hanbing
Gaisser, Lukas
Riedelbauch, Stefan
Titel: Monitoring pumping units by convolutional neural networks for operating point estimations
Erscheinungsdatum: 2023
Dokumentart: Zeitschriftenartikel
Seiten: 12
Erschienen in: Energies 16 (2023), No. 4392
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-132086
http://elib.uni-stuttgart.de/handle/11682/13208
http://dx.doi.org/10.18419/opus-13189
ISSN: 1996-1073
Zusammenfassung: To avoid the failure of pumping units, the monitoring of operating points with a subsequent assessment of the condition of the pump may support the decision for required maintenance. For that purpose, convolutional neural networks (CNNs) are implemented to predict the operating points of pumping units. Instead of using traditional flowmeter and manometer, vibration and acoustic signals are used to estimate the head and volume flow rate. An appropriate pre-processing of raw data is applied, enabling our method to predict well on different datasets. For the datasets measured in an anechoic chamber, the best model of each subset achieves relative errors smaller than 4.9% for the prediction of head and 7.6% for the volume flow rate. For cases where only small amounts of data exist, it is furthermore demonstrated that transfer learning from one dataset to another dataset provides an improvement in performance.
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
energies-16-04392-v2.pdf2,43 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons