Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13205
Autor(en): Schnücke, Gero
Krais, Nico
Bolemann, Thomas
Gassner, Gregor J.
Titel: Entropy stable discontinuous Galerkin schemes on moving meshes for hyperbolic conservation laws
Erscheinungsdatum: 2020
Dokumentart: Zeitschriftenartikel
Seiten: 42
Erschienen in: Journal of ccientific computing 82 (2020), No. 69
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-132245
http://elib.uni-stuttgart.de/handle/11682/13224
http://dx.doi.org/10.18419/opus-13205
ISSN: 0885-7474
1573-7691
Zusammenfassung: This work is focused on the entropy analysis of a semi-discrete nodal discontinuous Galerkin spectral element method (DGSEM) on moving meshes for hyperbolic conservation laws. The DGSEM is constructed with a local tensor-product Lagrange-polynomial basis computed from Legendre-Gauss-Lobatto points. Furthermore, the collocation of interpolation and quadrature nodes is used in the spatial discretization. This approach leads to discrete derivative approximations in space that are summation-by-parts (SBP) operators. On a static mesh, the SBP property and suitable two-point flux functions, which satisfy the entropy condition from Tadmor, allow to mimic results from the continuous entropy analysis, if it is ensured that properties such as positivity preservation (of the water height, density or pressure) are satisfied on the discrete level. In this paper, Tadmor’s condition is extended to the moving mesh framework. We show that the volume terms in the semi-discrete moving mesh DGSEM do not contribute to the discrete entropy evolution when a two-point flux function that satisfies the moving mesh entropy condition is applied in the split form DG framework. The discrete entropy behavior then depends solely on the interface contributions and on the domain boundary contribution. The interface contributions are directly controlled by proper choice of the numerical element interface fluxes. If an entropy conserving two-point flux is chosen, the interface contributions vanish. To increase the robustness of the discretization we use so-called entropy stable two-point fluxes at the interfaces that are guaranteed entropy dissipative and thus give a bound on the interface contributions in the discrete entropy balance. The remaining boundary condition contributions depend on the type of the considered boundary condition. E.g. for periodic boundary conditions that are of entropy conserving type, our methodology with the entropy conserving interface fluxes is fully entropy conservative and with the entropy stable interface fluxes is guaranteed entropy stable. The presented proof does not require any exactness of quadrature in the spatial integrals of the variational forms. As it is the case for static meshes, these results rely on the assumption that additional properties like positivity preservation are satisfied on the discrete level. Besides the entropy stability, the time discretization of the moving mesh DGSEM will be investigated and it will be proven that the moving mesh DGSEM satisfies the free stream preservation property for an arbitrary s-stage Runge–Kutta method, when periodic boundary conditions are used. The theoretical properties of the moving mesh DGSEM will be validated by numerical experiments for the compressible Euler equations with periodic boundary conditions.
Enthalten in den Sammlungen:06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s10915-020-01171-7.pdf953,77 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons