Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13369
Autor(en): Kleeberger, Kilian
Bormann, Richard
Kraus, Werner
Huber, Marco F.
Titel: A survey on learning-based robotic grasping
Erscheinungsdatum: 2020
Dokumentart: Zeitschriftenartikel
Seiten: 239-249
Erschienen in: Current robotics reports 1 (2020), S. 239-249
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-133881
http://elib.uni-stuttgart.de/handle/11682/13388
http://dx.doi.org/10.18419/opus-13369
ISSN: 2662-4087
Zusammenfassung: This review provides a comprehensive overview of machine learning approaches for vision-based robotic grasping and manipulation. Current trends and developments as well as various criteria for categorization of approaches are provided. Model-free approaches are attractive due to their generalization capabilities to novel objects, but are mostly limited to top-down grasps and do not allow a precise object placement which can limit their applicability. In contrast, model-based methods allow a precise placement and aim for an automatic configuration without any human intervention to enable a fast and easy deployment. Both approaches to robotic grasping and manipulation with and without object-specific knowledge are discussed. Due to the large amount of data required to train AI-based approaches, simulations are an attractive choice for robot learning. This article also gives an overview of techniques and achievements in transfers from simulations to the real world.
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s43154-020-00021-6.pdf1,69 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons