Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.18419/opus-13369
Autor(en): | Kleeberger, Kilian Bormann, Richard Kraus, Werner Huber, Marco F. |
Titel: | A survey on learning-based robotic grasping |
Erscheinungsdatum: | 2020 |
Dokumentart: | Zeitschriftenartikel |
Seiten: | 239-249 |
Erschienen in: | Current robotics reports 1 (2020), S. 239-249 |
URI: | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-133881 http://elib.uni-stuttgart.de/handle/11682/13388 http://dx.doi.org/10.18419/opus-13369 |
ISSN: | 2662-4087 |
Zusammenfassung: | This review provides a comprehensive overview of machine learning approaches for vision-based robotic grasping and manipulation. Current trends and developments as well as various criteria for categorization of approaches are provided. Model-free approaches are attractive due to their generalization capabilities to novel objects, but are mostly limited to top-down grasps and do not allow a precise object placement which can limit their applicability. In contrast, model-based methods allow a precise placement and aim for an automatic configuration without any human intervention to enable a fast and easy deployment. Both approaches to robotic grasping and manipulation with and without object-specific knowledge are discussed. Due to the large amount of data required to train AI-based approaches, simulations are an attractive choice for robot learning. This article also gives an overview of techniques and achievements in transfers from simulations to the real world. |
Enthalten in den Sammlungen: | 07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
s43154-020-00021-6.pdf | 1,69 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons