Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13395
Autor(en): Qian, An
Yi, Shuang
Chang, Le
Sun, Guangtong
Liu, Xiaoyang
Titel: Using GRACE data to study the impact of snow and rainfall on terrestrial water storage in Northeast China
Erscheinungsdatum: 2020
Dokumentart: Zeitschriftenartikel
Seiten: 21
Erschienen in: Remote sensing 12 (2020), No. 4166
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-134145
http://elib.uni-stuttgart.de/handle/11682/13414
http://dx.doi.org/10.18419/opus-13395
ISSN: 2072-4292
Zusammenfassung: Water resources are important for agricultural, industrial, and urban development. In this paper, we analyzed the influence of rainfall and snowfall on variations in terrestrial water storage (TWS) in Northeast China from Gravity Recovery and Climate Experiment (GRACE) gravity satellite data, GlobSnow snow water equivalent product, and ERA5-land monthly total precipitation, snowfall, and snow depth data. This study revealed the main composition and variation characteristics of TWS in Northeast China. We found that GRACE provided an effective method for monitoring large areas of stable seasonal snow cover and variations in TWS in Northeast China at both seasonal and interannual scales. On the seasonal scale, although summer rainfall was 10 times greater than winter snowfall, the terrestrial water storage in Northeast China peaked in winter, and summer rainfall brought about only a sub-peak, 1 month later than the maximum rainfall. On the interannual scale, TWS in Northeast China was controlled by rainfall. The correlation analysis results revealed that the annual fluctuations of TWS and rainfall in Northeast China appear to be influenced by ENSO (EI Niño-Southern Oscillation) events with a lag of 2-3 years. In addition, this study proposed a reconstruction model for the interannual variation in TWS in Northeast China from 2003 to 2016 on the basis of the contemporary terrestrial water storage and rainfall data.
Enthalten in den Sammlungen:06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
remotesensing-12-04166-v2.pdf3,67 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons