Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13405
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorBaazouzi, Sabri-
dc.contributor.authorRist, Felix Paul-
dc.contributor.authorWeeber, Max-
dc.contributor.authorBirke, Kai Peter-
dc.date.accessioned2023-08-10T12:43:41Z-
dc.date.available2023-08-10T12:43:41Z-
dc.date.issued2021-
dc.identifier.issn2313-0105-
dc.identifier.other1858248418-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-134246de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13424-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13405-
dc.description.abstractVarious studies show that electrification, integrated into a circular economy, is crucial to reach sustainable mobility solutions. In this context, the circular use of electric vehicle batteries (EVBs) is particularly relevant because of the resource intensity during manufacturing. After reaching the end-of-life phase, EVBs can be subjected to various circular economy strategies, all of which require the previous disassembly. Today, disassembly is carried out manually and represents a bottleneck process. At the same time, extremely high return volumes have been forecast for the next few years, and manual disassembly is associated with safety risks. That is why automated disassembly is identified as being a key enabler of highly efficient circularity. However, several challenges need to be addressed to ensure secure, economic, and ecological disassembly processes. One of these is ensuring that optimal disassembly strategies are determined, considering the uncertainties during disassembly. This paper introduces our design for an adaptive disassembly planner with an integrated disassembly strategy optimizer. Furthermore, we present our optimization method for obtaining optimal disassembly strategies as a combination of three decisions: (1) the optimal disassembly sequence, (2) the optimal disassembly depth, and (3) the optimal circular economy strategy at the component level. Finally, we apply the proposed method to derive optimal disassembly strategies for one selected battery system for two condition scenarios. The results show that the optimization of disassembly strategies must also be used as a tool in the design phase of battery systems to boost the disassembly automation and thus contribute to achieving profitable circular economy solutions for EVBs.en
dc.language.isoende
dc.relation.uridoi:10.3390/batteries7040074de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.subject.ddc621.3de
dc.titleOptimization of disassembly strategies for electric vehicle batteriesen
dc.typearticlede
dc.date.updated2021-12-01T15:09:09Z-
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.institutInstitut für Photovoltaikde
ubs.institutFraunhofer Institut für Produktionstechnik und Automatisierung (IPA)de
ubs.publikation.seiten24de
ubs.publikation.sourceBatteries 7 (2021), No. 74de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
batteries-07-00074-v3.pdf1,94 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons