Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-13511
Authors: Forslund, Axel
Jung, Jong Hyun
Srinivasan, Prashanth
Grabowski, Blazej
Title: Thermodynamic properties on the homologous temperature scale from direct upsampling : understanding electron-vibration coupling and thermal vacancies in bcc refractory metals
Issue Date: 2023
metadata.ubs.publikation.typ: Zeitschriftenartikel
metadata.ubs.publikation.seiten: 16
metadata.ubs.publikation.source: Physical Review, B 107 (2023), 174309
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-135309
http://elib.uni-stuttgart.de/handle/11682/13530
http://dx.doi.org/10.18419/opus-13511
ISSN: 2469-9969
2469-9950
metadata.ubs.bemerkung.extern: ©2023 American Physical Society
Abstract: We have calculated thermodynamic properties of four bcc refractory elements - V, Ta, Mo, and W - up to the melting point with full density-functional-theory accuracy, using the recently developed direct-upsampling method [J. H. Jung et al., npj Comput. Mater. 9, 3 (2023)]. The direct-upsampling methodology takes full account of explicit anharmonic vibrations and electron-vibration coupling very efficiently using machine-learning potentials. We have thus been able to compute highly converged free-energy surfaces for the PBE exchange-correlation functional, from which accurate temperature dependencies of various thermodynamic properties such as the heat capacity, thermal expansion coefficient, and bulk modulus are accessible. For all four elements, the electronic contribution is large, including a strong coupling with the thermal vibrations. The atomic forces in W are even affected by the temperature-consistent Fermi broadening, which alters the free energy by around 3 meV/atom at the melting point. Trends within group V and group VI refractory elements are observed and explained by qualitative differences in the electronic density of states. We also provide an estimate of the Gibbs energies of vacancy formation and the vacancy contribution to the thermodynamics. Lastly and most importantly, our results are analyzed in terms of the homologous temperature scale relative to theoretically predicted melting points (for the PBE functional). The homologous temperature dependencies show a remarkable agreement with experiments and reveal the predictive power of self-consistently determined ab initio thermodynamic properties.
Appears in Collections:03 Fakultät Chemie

Files in This Item:
File Description SizeFormat 
PhysRevB.107.174309.pdf2,75 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.