Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.18419/opus-13676
Langanzeige der Metadaten
DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Gado, Sabrina | - |
dc.contributor.author | Lingelbach, Katharina | - |
dc.contributor.author | Wirzberger, Maria | - |
dc.contributor.author | Vukelić, Mathias | - |
dc.date.accessioned | 2023-10-25T08:31:34Z | - |
dc.date.available | 2023-10-25T08:31:34Z | - |
dc.date.issued | 2023 | de |
dc.identifier.issn | 1424-8220 | - |
dc.identifier.other | 1869560388 | - |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-136950 | de |
dc.identifier.uri | http://elib.uni-stuttgart.de/handle/11682/13695 | - |
dc.identifier.uri | http://dx.doi.org/10.18419/opus-13676 | - |
dc.description.abstract | Humans’ performance varies due to the mental resources that are available to successfully pursue a task. To monitor users’ current cognitive resources in naturalistic scenarios, it is essential to not only measure demands induced by the task itself but also consider situational and environmental influences. We conducted a multimodal study with 18 participants (nine female, M = 25.9 with SD = 3.8 years). In this study, we recorded respiratory, ocular, cardiac, and brain activity using functional near-infrared spectroscopy (fNIRS) while participants performed an adapted version of the warship commander task with concurrent emotional speech distraction. We tested the feasibility of decoding the experienced mental effort with a multimodal machine learning architecture. The architecture comprised feature engineering, model optimisation, and model selection to combine multimodal measurements in a cross-subject classification. Our approach reduces possible overfitting and reliably distinguishes two different levels of mental effort. These findings contribute to the prediction of different states of mental effort and pave the way toward generalised state monitoring across individuals in realistic applications. | en |
dc.description.sponsorship | Ministry of Economic Affairs, Labour and Tourism Baden-Württemberg | de |
dc.description.sponsorship | KI-Fortschrittszentrum Lernende Systeme und Kognitive Robotik | de |
dc.description.sponsorship | Federal Ministry of Science, Research, and the Arts Baden-Württemberg | de |
dc.description.sponsorship | University of Stuttgart | de |
dc.language.iso | en | de |
dc.relation.uri | doi:10.3390/s23146546 | de |
dc.rights | info:eu-repo/semantics/openAccess | de |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | de |
dc.subject.ddc | 004 | de |
dc.subject.ddc | 150 | de |
dc.title | Decoding mental effort in a quasi-realistic scenario : a feasibility study on multimodal data fusion and classification | en |
dc.type | article | de |
dc.date.updated | 2023-08-08T16:22:04Z | - |
ubs.fakultaet | Wirtschafts- und Sozialwissenschaften | de |
ubs.fakultaet | Externe wissenschaftliche Einrichtungen | de |
ubs.fakultaet | Fakultätsübergreifend / Sonstige Einrichtung | de |
ubs.institut | Institut für Erziehungswissenschaft | de |
ubs.institut | Fraunhofer Institut für Arbeitswirtschaft und Organisation (IAO) | de |
ubs.institut | Fakultätsübergreifend / Sonstige Einrichtung | de |
ubs.publikation.seiten | 26 | de |
ubs.publikation.source | Sensors 23 (2023), No. 6546 | de |
ubs.publikation.typ | Zeitschriftenartikel | de |
Enthalten in den Sammlungen: | 10 Fakultät Wirtschafts- und Sozialwissenschaften |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
sensors-23-06546.pdf | 5,41 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons