Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13881
Autor(en): Fritsching, Udo
Buss, Lizoel
Tonn, Teresa
Schumski, Lukas
Gakovi, Jurgen
Hatscher, Johnson David
Sölter, Jens
Avila, Kerstin
Karpuschewski, Bernhard
Gerken, Julian Frederic
Wolf, Tobias
Biermann, Dirk
Menze, Christian
Möhring, Hans-Christian
Tchoupe, Elio
Heidemanns, Lukas
Herrig, Tim
Klink, Andreas
Nabbout, Kaissar
Sommerfeld, Martin
Luther, Fabian
Schaarschmidt, Ingo
Schubert, Andreas
Richter, Markus
Titel: Flow visualisation and evaluation studies on metalworking fluid applications in manufacturing processes : methods and results
Erscheinungsdatum: 2023
Dokumentart: Zeitschriftenartikel
Seiten: 32
Erschienen in: Processes 22 (2023), No. 2690
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-139003
http://elib.uni-stuttgart.de/handle/11682/13900
http://dx.doi.org/10.18419/opus-13881
ISSN: 2227-9717
Zusammenfassung: Metalworking operations rely on the successful application of metalworking fluids (MWFs) for effective and efficient operation. Processes such as grinding or drilling often require the use of MWFs for cooling, lubrication, and chip removal. Electrochemical machining processes require electrolyte flow to operate. However, in those machining operations, a fundamental understanding of the mode of action of MWF is lacking due to the unknown flow dynamics and its interaction with the material removal during the process. Important information on the behaviour of MWFs during machining can be obtained from specific experimental flow visualisation studies. In this paper, promising flow visualisation analysis techniques applied to exemplary machining processes (grinding, sawing, drilling, and electrochemical machining) are presented and discussed. Shadowgraph imaging and flow measurements, e.g., particle image velocimetry, allow the identification of typical flow and MWF operating regimes in the different machining processes. Based on the identification of these regimes, efficient machining parameters and MWF applications can be derived. In addition, detailed experimental analyses of MWFs provide essential data for the input and validation of model development and numerical simulations within the Priority Programme SPP 2231 FluSimPro.
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
processes-11-02690-v2.pdf17,6 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons