Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13898
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorRöhrle, Oliver (Prof., PhD)-
dc.contributor.authorKlotz, Thomas-
dc.date.accessioned2024-01-31T14:57:03Z-
dc.date.available2024-01-31T14:57:03Z-
dc.date.issued2023de
dc.identifier.isbn978-3-946412-11-3-
dc.identifier.other1879671816-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-139176de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13917-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13898-
dc.description.abstractSkeletal muscles generate bioelectromagnetic fields that contain information about the neural control of motions and the function of the muscle. One distinguishes between electromyography (EMG), the measurement of the muscle-induced electric potential field, and magnetomyography (MMG), the recording of muscle-induced magnetic fields. EMG is a well-established methodology, and its limitations have been extensively discussed in the scientific literature. In contrast, MMG is an emerging methodology with the potential to overcome some of the inherent limitations of EMG. To unlock the full potential of MMG, it is essential to support empirical observations from experiments with a solid theoretical understanding of muscle-induced bioelectromagnetic fields. Therefore, this thesis derives a novel multiscale skeletal muscle model that can predict realistic EMG and MMG signals. This model is used to conduct the first systematic comparison between surface EMG and non-invasive MMG. By using simulations, all system parameters can be controlled precisely. This would not be possible experimentally. The fundamental properties of EMG and MMG are systematically explored using simulations comparable to electrically or reflex-evoked contractions. Notably, it is shown that non-invasive MMG data is spatially more selective than comparable high-density EMG data. This property, for example, is advantageous for decomposing signals of voluntary contractions into individual motor unit spike trains. Using a novel in silico trial framework, it is demonstrated that non-invasive MMG-based motor unit decomposition is superior to the well-established surface EMG-based motor unit decomposition.en
dc.language.isoende
dc.publisherStuttgart : Institute for Modelling and Simulation of Biomechanical Systems, Chair of Continuum Biomechanics and Mechanobiology, University of Stuttgartde
dc.relation.ispartofseriesCBM;12-
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleBioelectromagnetic fields for studying neuromuscular physiology : in silico investigations of EMG and MMGen
dc.typedoctoralThesisde
ubs.dateAccepted2023-04-21-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.institutInstitut für Modellierung und Simulation Biomechanischer Systemede
ubs.publikation.seiteniii, 116de
ubs.publikation.typDissertationde
ubs.schriftenreihe.nameCBMde
ubs.thesis.grantorBau- und Umweltingenieurwissenschaftende
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
CBM-12_2023_Klotz_Thomas_Dissertation.pdf10,57 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.