Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14009
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorWaldhof, Marcel-
dc.contributor.authorWochner, Isabell-
dc.contributor.authorStollenmaier, Katrin-
dc.contributor.authorParspour, Nejila-
dc.contributor.authorSchmitt, Syn-
dc.date.accessioned2024-03-06T15:11:33Z-
dc.date.available2024-03-06T15:11:33Z-
dc.date.issued2022de
dc.identifier.issn2218-6581-
dc.identifier.other1882873327-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-140282de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14028-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14009-
dc.description.abstractExoskeletons are powerful tools for aiding humans with pathological conditions, in dangerous environments or in manually exhausting tasks. Typically, they are designed for specific maximum scenarios without taking into account the diversity of tasks and the individuality of the user. To address this discrepancy, a framework was developed for personalizing an exoskeleton by scaling the components, especially the electrical machine, based on different simulated human muscle forces. The main idea was to scale a numerical arm model based on body mass and height to predict different movements representing both manual labor and daily activities. The predicted torques necessary to produce these movements were then used to generate a load/performance cycle for the power unit design. Considering these torques, main operation points of this load cycle were defined and a reference power unit was scaled and optimized. Therefore, a scalability model for an electrical machine is introduced. This individual adaptation and scaling of the power unit for different users leads to a better performance and a lighter design.en
dc.description.sponsorshipHigh-Performance Center Mass Personalization in Stuttgartde
dc.description.sponsorshipMinistry of Science, Research and the Arts BadenWürttembergde
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG, German Research Foundation)de
dc.description.sponsorshipStuttgart Center for Simulation Science (SimTech)de
dc.language.isoende
dc.relation.uridoi:10.3390/robotics11050107de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.subject.ddc620de
dc.titleDesign and scaling of exoskeleton power units considering load cycles of humansen
dc.typearticlede
dc.date.updated2023-11-14T00:11:10Z-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Modellierung und Simulation Biomechanischer Systemede
ubs.institutInstitut für Elektrische Energiewandlungde
ubs.publikation.seiten18de
ubs.publikation.sourceRobotics 11 (2022), No. 107de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
robotics-11-00107-v2.pdfArtikel13,77 MBAdobe PDFÖffnen/Anzeigen
robotics-11-00107-s001.zipSupplement1,41 MBUnknownÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons