Please use this identifier to cite or link to this item:
http://dx.doi.org/10.18419/opus-14076
Authors: | Karabelli, Duygu Kiemel, Steffen Singh, Soumya Koller, Jan Ehrenberger, Simone Miehe, Robert Weeber, Max Birke, Kai Peter |
Title: | Tackling xEV battery chemistry in view of raw material supply shortfalls |
Issue Date: | 2020 |
metadata.ubs.publikation.typ: | Zeitschriftenartikel |
metadata.ubs.publikation.seiten: | 13 |
metadata.ubs.publikation.source: | Frontiers in energy research 8 (2020), No. 594857 |
URI: | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-140955 http://elib.uni-stuttgart.de/handle/11682/14095 http://dx.doi.org/10.18419/opus-14076 |
ISSN: | 2296-598X |
Abstract: | The growing number of Electric Vehicles poses a serious challenge at the end-of-life for battery manufacturers and recyclers. Manufacturers need access to strategic or critical materials for the production of a battery system. Recycling of end-of-life electric vehicle batteries may ensure a constant supply of critical materials, thereby closing the material cycle in the context of a circular economy. However, the resource-use per cell and thus its chemistry is constantly changing, due to supply disruption or sharply rising costs of certain raw materials along with higher performance expectations from electric vehicle-batteries. It is vital to further explore the nickel-rich cathodes, as they promise to overcome the resource and cost problems. With this study, we aim to analyze the expected development of dominant cell chemistries of Lithium-Ion Batteries until 2030, followed by an analysis of the raw materials availability. This is accomplished with the help of research studies and additional experts’ survey which defines the scenarios to estimate the battery chemistry evolution and the effect it has on a circular economy. In our results, we will discuss the annual demand for global e-mobility by 2030 and the impact of Nickel-Manganese-Cobalt based cathode chemistries on a sustainable economy. Estimations beyond 2030 are subject to high uncertainty due to the potential market penetration of innovative technologies that are currently under research (e.g. solid-state Lithium-Ion and/or sodium-based batteries). |
Appears in Collections: | 05 Fakultät Informatik, Elektrotechnik und Informationstechnik |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
datasheet1.pdf | Supplement | 492,17 kB | Adobe PDF | View/Open |
datasheet2.pdf | Supplement | 432,4 kB | Adobe PDF | View/Open |
fenrg-08-594857.pdf | Artikel | 1,27 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License