Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-14144
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarzen, Johanna-
dc.contributor.authorLeymann, Frank-
dc.date.accessioned2024-03-28T10:15:05Z-
dc.date.available2024-03-28T10:15:05Z-
dc.date.issued2022de
dc.identifier.issn2673-9909-
dc.identifier.other1885407165-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-141634de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14163-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14144-
dc.description.abstractShor’s algorithm for prime factorization is a hybrid algorithm consisting of a quantum part and a classical part. The main focus of the classical part is a continued fraction analysis. The presentation of this is often short, pointing to text books on number theory. In this contribution, we present the relevant results and proofs from the theory of continued fractions in detail (even in more detail than in text books), filling the gap to allow a complete comprehension of Shor’s algorithm. Similarly, we provide a detailed computation of the estimation of the probability that convergents will provide the period required for determining a prime factor.en
dc.description.sponsorshipBMWK project PlanQKde
dc.language.isoende
dc.relation.uridoi:10.3390/appliedmath2030023de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.titleContinued fractions and probability estimations in Shor’s algorithm : a detailed and self-contained treatiseen
dc.typearticlede
dc.date.updated2023-11-14T01:29:08Z-
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Architektur von Anwendungssystemende
ubs.publikation.seiten393-432de
ubs.publikation.sourceAppliedMath 2 (2022), S. 393-432de
ubs.publikation.typZeitschriftenartikelde
Appears in Collections:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Files in This Item:
File Description SizeFormat 
appliedmath-02-00023-v2.pdf7,66 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons