Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-14146
Authors: Wang, Bo
Title: Assessment of ICESat-2 laser altimetry in hydrological applications
Issue Date: 2024
metadata.ubs.publikation.typ: Dissertation
metadata.ubs.publikation.seiten: xx, 145
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-141651
http://elib.uni-stuttgart.de/handle/11682/14165
http://dx.doi.org/10.18419/opus-14146
Abstract: Water bodies act as critical components of the hydrological cycle, serving as reservoirs, lakes, wetlands, and aquifers that store and release water over time. Monitoring changes in the extent and volume of these water bodies is crucial for understanding their role in regulating water flow, maintaining baseflow during dry periods, and supporting ecological habitats. Furthermore, the identification of trends and alterations in water body dynamics aids in detecting potential impacts of climate change and human activities on the hydrological cycle. Historically, gauge stations have been employed to monitor the water level of these bodies since the 19th century. However, their numbers have been dwindling since the 1970s due to maintenance challenges. With the development of satellite altimetry missions, more accurate and continuous monitoring of lakes and rivers has become possible. These satellites in recent years offer the capability to provide water level data with different along-track sampling distances. For instance, ICESat-2 offers a sampling distance of 70 cm with a footprint size of ~17 m, while Sentinel-3 provides a sampling distance of 300 m. The temporal resolution ranges from 10 days (Jason-3) to 369 days (Cryosat-2). These advances allow researchers to effectively observe and understand changes in water bodies. The invention of satellite-based laser altimetry has brought a revolutionary advancement in our ability to monitor and study Earth’s water bodies with unprecedented precision and extensive spatial coverage. This doctoral thesis aims to explore the diverse applications of ICESat-2 laser altimetry data over inland water bodies. Through these investigations, the aim is to advance our understanding of global hydrological processes and acquire valuable insights to improve water resource management strategies. It is important to understand the error budget of the altimetric observations, one component of which is radial orbit error. Apart from the altimetric ranging errors, radial orbit errors directly influence the accuracy of the measurement of Earth’s surface heights. These errors can be assessed by analyzing the difference of surface heights at ground track intersections, so-called crossover differences (XO differences). An effective approach is to model the orbit error by minimizing the residual XO difference by the least-squares (LS) method, which is commonly known as XO adjustment. This method was implemented in the Arctic region to examine the performance of the LS adjustment over spherical cap geometry and assess the level of radial orbit error across a large-scale area. This analysis will aid in understanding the accuracy and reliability of ICESat-2 satellite orbit over the Arctic region. The ICESat-2 satellite captures high-resolution observations of Earth’s surface, including land and water, thus enabling dense measurements of heights. The green laser used in ICESat-2 has the capability to penetrate water surfaces, allowing measurements of not only the lake water level but also the nearshore water bottom. This study proposes a novel algorithm that combines ICESat-2 measurements with Landsat imagery to extract lake water level, extent and volume. This algorithm was applied to Lake Mead, resulting in a long-term time series of water level, extent and volume dating back to 1984, only derived from remote sensing data. The ICESat-2 satellite is equipped with three pairs of laser transmitters, which concurrently generate three pairs of ground tracks. This unique characteristic enables us to derive river surface heights for each ground track, thereby calculating the river slope between two tracks, referred to as the across-track river slope. Moreover, when one ground track passes through the river surface, producing dense measurements, it allows us to obtain the small-scale slope for that specific track, termed the along-track based river slope. By using these methods, both types of slopes were estimated for the entire length of the Rhine River and subsequently generated the average slope for each reach along the river.
Appears in Collections:06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Files in This Item:
File Description SizeFormat 
PhDthesis_BoWang.pdf32,72 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.