Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14255
Autor(en): Villota-Narvaez, Yesid
Garzón-Alvarado, Diego A.
Röhrle, Oliver
Ramírez-Martínez, Angelica M.
Titel: Multi-scale mechanobiological model for skeletal muscle hypertrophy
Erscheinungsdatum: 2022
Dokumentart: Zeitschriftenartikel
Seiten: 14
Erschienen in: Frontiers in physiology 13 (2022), No. 899784
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-142740
http://elib.uni-stuttgart.de/handle/11682/14274
http://dx.doi.org/10.18419/opus-14255
ISSN: 1664-042X
Zusammenfassung: Skeletal muscle adaptation is correlated to training exercise by triggering different signaling pathways that target many functions; in particular, the IGF1-AKT pathway controls protein synthesis and degradation. These two functions regulate the adaptation in size and strength of muscles. Computational models for muscle adaptation have focused on: the biochemical description of signaling pathways or the mechanical description of muscle function at organ scale; however, an interrelation between these two models should be considered to understand how an adaptation in muscle size affects the protein synthesis rate. In this research, a dynamical model for the IGF1-AKT signaling pathway is linked to a continuum-mechanical model describing the active and passive mechanical response of a muscle; this model is used to study the impact of the adaptive muscle geometry on the protein synthesis at the fiber scale. This new computational model links the signaling pathway to the mechanical response by introducing a growth tensor, and links the mechanical response to the signaling pathway through the evolution of the protein synthesis rate. The predicted increase in cross sectional area (CSA) due to an 8 weeks training protocol excellently agreed with experimental data. Further, our results show that muscle growth rate decreases, if the correlation between protein synthesis and CSA is negative. The outcome of this study suggests that multi-scale models coupling continuum mechanical properties and molecular functions may improve muscular therapies and training protocols.
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Presentation1.pdfSupplement342,52 kBAdobe PDFÖffnen/Anzeigen
fphys-13-899784.pdfArtikel2,18 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons