Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14349
Autor(en): Nayyeri, Mojtaba
Rouhani, Modjtaba
Yazdi, Hadi Sadoghi
Mäkelä, Marko M.
Maskooki, Alaleh
Nikulin, Yury
Titel: Correntropy-based constructive one hidden layer neural network
Erscheinungsdatum: 2024
Dokumentart: Zeitschriftenartikel
Seiten: 36
Erschienen in: Algorithms 17 (2024), No. 49
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-143685
http://elib.uni-stuttgart.de/handle/11682/14368
http://dx.doi.org/10.18419/opus-14349
ISSN: 1999-4893
Zusammenfassung: One of the main disadvantages of the traditional mean square error (MSE)-based constructive networks is their poor performance in the presence of non-Gaussian noises. In this paper, we propose a new incremental constructive network based on the correntropy objective function (correntropy-based constructive neural network (C2N2)), which is robust to non-Gaussian noises. In the proposed learning method, input and output side optimizations are separated. It is proved theoretically that the new hidden node, which is obtained from the input side optimization problem, is not orthogonal to the residual error function. Regarding this fact, it is proved that the correntropy of the residual error converges to its optimum value. During the training process, the weighted linear least square problem is iteratively applied to update the parameters of the newly added node. Experiments on both synthetic and benchmark datasets demonstrate the robustness of the proposed method in comparison with the MSE-based constructive network, the radial basis function (RBF) network. Moreover, the proposed method outperforms other robust learning methods including the cascade correntropy network (CCOEN), Multi-Layer Perceptron based on the Minimum Error Entropy objective function (MLPMEE), Multi-Layer Perceptron based on the correntropy objective function (MLPMCC) and the Robust Least Square Support Vector Machine (RLS-SVM).
Enthalten in den Sammlungen:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
algorithms-17-00049-v3.pdf4,21 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons