Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14414
Autor(en): Pfefferkorn, Robin
Bieber, Simon
Oesterle, Bastian
Bischoff, Manfred
Betsch, Peter
Titel: Improving efficiency and robustness of enhanced assumed strain elements for nonlinear problems
Erscheinungsdatum: 2021
Dokumentart: Zeitschriftenartikel
Seiten: 1911-1939
Erschienen in: International journal for numerical methods in engineering 122 (2021), S. 1911-1939
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-144334
http://elib.uni-stuttgart.de/handle/11682/14433
http://dx.doi.org/10.18419/opus-14414
ISSN: 1097-0207
0029-5981
Zusammenfassung: The enhanced assumed strain (EAS) method is one of the most frequently used methods to avoid locking in solid and structural finite elements. One issue of EAS elements in the context of geometrically nonlinear analyses is their lack of robustness in the Newton-Raphson scheme, which is characterized by the necessity of small load increments and large number of iterations. In the present work we extend the recently proposed mixed integration point (MIP) method to EAS elements in order to overcome this drawback in numerous applications. Furthermore, the MIP method is generalized to generic material models, which makes this simple method easily applicable for a broad class of problems. In the numerical simulations in this work, we compare standard strain‐based EAS elements and their MIP improved versions to elements based on the assumed stress method in order to explain when and why the MIP method allows to improve robustness. A further novelty in the present work is an inverse stress‐strain relation for a Neo‐Hookean material model.
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
NME_NME6605.pdf3,05 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons