Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14457
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorKopp, Mike-
dc.contributor.authorFill, Alexander-
dc.contributor.authorStröbel, Marco-
dc.contributor.authorBirke, Kai Peter-
dc.date.accessioned2024-06-04T12:04:40Z-
dc.date.available2024-06-04T12:04:40Z-
dc.date.issued2024de
dc.identifier.issn2313-0105-
dc.identifier.other1890618926-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-144762de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14476-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14457-
dc.description.abstractRevolutionary and cost-effective state estimation techniques are crucial for advancing lithium-ion battery technology, especially in mobile applications. Accurate prediction of battery state-of-health (SoH) enhances state-of-charge estimation while providing valuable insights into performance, second-life utility, and safety. While recent machine learning developments show promise in SoH estimation, this paper addresses two challenges. First, many existing approaches depend on predefined charge/discharge cycles with constant current/constant voltage profiles, which limits their suitability for real-world scenarios. Second, pure time series forecasting methods require prior knowledge of the battery’s lifespan in order to formulate predictions within the time series. Our novel hybrid approach overcomes these limitations by classifying the current aging state of the cell rather than tracking the SoH. This is accomplished by analyzing current pulses filtered from authentic drive cycles. Our innovative solution employs a Long Short-Term Memory-based neural network for SoH prediction based on residual capacity, making it well suited for online electric vehicle applications. By overcoming these challenges, our hybrid approach emerges as a reliable alternative for precise SoH estimation in electric vehicle batteries, marking a significant advancement in machine learning-based SoH estimation.en
dc.description.sponsorshipBundesministerium für Wirtschaft und Energiede
dc.language.isoende
dc.relation.uridoi:10.3390/batteries10030077de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.subject.ddc621.3de
dc.titleA novel long short-term memory approach for online state-of-health identification in lithium-ion battery cellsen
dc.typearticlede
dc.date.updated2024-04-25T13:23:31Z-
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Photovoltaikde
ubs.publikation.seiten16de
ubs.publikation.sourceBatteries 10 (2024), No. 77de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
batteries-10-00077.pdf2,83 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons