Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14618
Autor(en): Vukelić, Mathias
Bui, Michael
Vorreuther, Anna
Lingelbach, Katharina
Titel: Combining brain-computer interfaces with deep reinforcement learning for robot training : a feasibility study in a simulation environment
Erscheinungsdatum: 2023
Dokumentart: Zeitschriftenartikel
Seiten: 16
Erschienen in: Frontiers in neuroergonomics 4 (2023), No. 1274730
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-146378
http://elib.uni-stuttgart.de/handle/11682/14637
http://dx.doi.org/10.18419/opus-14618
ISSN: 2673-6195
Zusammenfassung: Deep reinforcement learning (RL) is used as a strategy to teach robot agents how to autonomously learn complex tasks. While sparsity is a natural way to define a reward in realistic robot scenarios, it provides poor learning signals for the agent, thus making the design of good reward functions challenging. To overcome this challenge learning from human feedback through an implicit brain-computer interface (BCI) is used. We combined a BCI with deep RL for robot training in a 3-D physical realistic simulation environment. In a first study, we compared the feasibility of different electroencephalography (EEG) systems (wet- vs. dry-based electrodes) and its application for automatic classification of perceived errors during a robot task with different machine learning models. In a second study, we compared the performance of the BCI-based deep RL training to feedback explicitly given by participants. Our findings from the first study indicate the use of a high-quality dry-based EEG-system can provide a robust and fast method for automatically assessing robot behavior using a sophisticated convolutional neural network machine learning model. The results of our second study prove that the implicit BCI-based deep RL version in combination with the dry EEG-system can significantly accelerate the learning process in a realistic 3-D robot simulation environment. Performance of the BCI-based trained deep RL model was even comparable to that achieved by the approach with explicit human feedback. Our findings emphasize the usage of BCI-based deep RL methods as a valid alternative in those human-robot applications where no access to cognitive demanding explicit human feedback is available.
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Data_Sheet_1.PDFSupplement626,24 kBAdobe PDFÖffnen/Anzeigen
fnrgo-04-1274730.pdfArtikel1,85 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons