Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14725
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorCai, Renye-
dc.contributor.authorZhang, Heng-
dc.contributor.authorLai, Chenxiang-
dc.contributor.authorYu, Zexin-
dc.contributor.authorZeng, Xiangkun-
dc.contributor.authorWu, Min-
dc.contributor.authorWang, Yankun-
dc.contributor.authorHuang, Qisen-
dc.contributor.authorZhu, Yiwei-
dc.contributor.authorKong, Chunyu-
dc.date.accessioned2024-07-25T14:27:56Z-
dc.date.available2024-07-25T14:27:56Z-
dc.date.issued2024de
dc.identifier.issn1996-1944-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-147441de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14744-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14725-
dc.description.abstractThe present paper introduces an innovative strain energy function (SEF) for incompressible anisotropic fiber-reinforced materials. This SEF is specifically designed to understand the mechanical behavior of carbon fiber-woven fabric. The considered model combines polyconvex invariants forming an integrity basisin polynomial form, which is inspired by the application of Noether’s theorem. A single solution can be obtained during the identification because of the relationship between the SEF we have constructed and the material parameters, which are linearly dependent. The six material parameters were precisely determined through a comparison between the closed-form solutions from our model and the corresponding tensile experimental data with different stretching ratios, with determination coefficients consistently reaching a remarkable value of 0.99. When considering only uniaxial tensile tests, our model can be simplified from a quadratic polynomial to a linear polynomial, thereby reducing the number of material parameters required from six to four, while the fidelity of the model’s predictive accuracy remains unaltered. The comparison between the results of numerical calculations and experiments proves the efficiency and accuracy of the method.en
dc.description.sponsorshipThe People’s Republic of China is acknowledged for its financial support through a grant on the National Natural Science Foundation of China (No. 12302081), the China Postdoctoral Science Foundation (No. 2023M740743), and Natural Science Foundation of Guangdong Province of China (No. 2024A1515012418).de
dc.description.sponsorshipNational Natural Science Foundation of Chinade
dc.description.sponsorshipChina Postdoctoral Science Foundationde
dc.description.sponsorshipNatural Science Foundation of Guangdong Province of Chinade
dc.language.isoende
dc.relation.uridoi:10.3390/ma17102456de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.subject.ddc670de
dc.titleAnisotropic hyperelastic strain energy function for carbon fiber woven fabricsen
dc.typearticlede
dc.date.updated2024-06-19T17:24:40Z-
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Fertigungstechnologie keramischer Bauteilede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.noppnyesde
ubs.publikation.seiten14de
ubs.publikation.sourceMaterials 17 (2024), No. 2456de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
materials-17-02456.pdf3,34 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons