Please use this identifier to cite or link to this item: http://elib.uni-stuttgart.de/handle/11682/15498
Authors: Parthasarathy, Swaminathan
Title: Adaptive error control for stratospheric long-distance optical links
Issue Date: 2024
metadata.ubs.publikation.typ: Dissertation
metadata.ubs.publikation.seiten: XXI, 151
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-154986
http://elib.uni-stuttgart.de/handle/11682/15498
Abstract: Free-space optical (FSO) communication plays a crucial role in aerospace technology, utilizing lasers to establish high-speed, wireless connections over long distances. FSO surpasses conventional RF wireless technology in various aspects and supports high-data-rate connectivity for services such as Internet access, data transfer, voice communication, and image transfer. High-Altitude Platforms (HAPs) have emerged as ideal hosts for FSO communication networks, offering ultra-high data rates for applications like high-speed Internet, video conferencing, telemedicine, smart cities, and autonomous driving. FSO via HAPs ensures minimal latency, making it suitable for real-time tasks like remote surgery and autonomous vehicle control. The swift, long-distance communication links with low delays make FSO-equipped HAPs ideal for RF-congested areas, providing cost-effective solutions in remote regions and contributing to environmental monitoring. This thesis explores the use of adaptive code-rate Hybrid Automatic Repeat Request (HARQ) methods and channel state information (CSI) to improve the transmission efficiency of Free-Space Optical (FSO) links between High Altitude Platforms (HAPs). The study looks at channel problems like atmospheric turbulence and static pointing errors, focusing on the weak fluctuation regime of atmospheric turbulence. It explores the reciprocal behavior in bidirectional FSO channels to improve performance efficiency, providing evidence of channel reciprocity. The research proposes using HARQ, an adaptive Reed-Solomon (RS) code-rate technique, and different CSI types to address these impairments. Simulations of various situations are used to test how well these methods work. This helps us learn more about how efficient HARQ protocols are in inter-HAP FSO links, how important different CSI is in adaptive rate HARQ, and possible ways to make the system more efficient. This thesis looks at the channel model for inter-High Altitude Platform (HAP) Free-Space Optical (FSO) links in great detail, taking atmospheric conditions and static pointing errors into account. The channel is modeled as a lognormal fading channel under a weak fluctuation regime. The principle of channel reciprocity and the measures used to quantify it are discussed, providing a foundational understanding for the subsequent investigations. Forward Error Correction (FEC) schemes, with a specific emphasis on the Reed-Solomon (RS) scheme, and various Automatic Repeat reQuest (ARQ) schemes are thoroughly examined. A meticulous comparison of different ARQ schemes highlights that Selective Repeat ARQ (SR-ARQ) is the most efficient for high-error-rate channels, making it the preferred choice for inter-HAP FSO channels. Conversely, Stop and Wait ARQ (SW-ARQ) and Go-Back-N ARQ (GBN-ARQ) are found to be less suitable for these channels. An innovative approach is introduced, leveraging various types of Channel State Information (CSI) to adjust the Reed-Solomon Forward Error Correction (FEC) code-rate. Four types of CSI: perfect CSI (P-CSI), reciprocal CSI (R-CSI), delayed CSI (D-CSI), and fixed mean CSI (F-CSI) are employed. The adaptation of the Reed-Solomon FEC code-rate, aligned with Selective Repeat ARQ, is explored, and the optimal power selection is identified through rigorous analysis. It shows simulation models that use OMNET++ and gives information about the inter-HAP channel and the event-based selective repeat HARQ model. The study demonstrates reciprocity in the longest recorded ground-to-ground bidirectional Free-Space Optical (FSO) link, holding promise to mitigate signal scintillation caused by atmospheric turbulence. It evaluates the performance of different ARQ protocols and adaptive Hybrid Automatic Repeat Request (HARQ) schemes in inter-HAP FSO communication systems. The results show how channel state information, turbulence in the atmosphere, and pointing errors affect the performance of the system. They also suggest ways to improve system efficiency, such as using CSI prediction and soft combining. These findings offer valuable insights for the design and optimization of ARQ and HARQ schemes in inter-HAP FSO communication systems and suggest promising avenues for future research.
Appears in Collections:05 Fakultät Informatik, Elektrotechnik und Informationstechnik



Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.