Biotransformationen an Derivaten ungewöhnlicher, cyclischer Aminosäuren

Thumbnail Image

Date

2003

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Im Rahmen der vorliegenden Arbeit sollten Biotransformationsverfahren für die Darstellung von enantiomerenreinen Derivaten zweier cyclischer Aminosäuren entwickelt werden: (i) ß-Amino-cyclopropancarbonsäure (ß-ACC) und (ii) Pipecolinsäure (Pip, Piperidin-2-carbonsäure). Beide Stoffe sind als Synthesebausteine für pharmazeutisch wirksame Verbindungen von Interesse.

Ausgehend von dem bisher nur racemisch zugänglichem ß-ACC-Syntheseintermediat N-tert-Butyloxycarbonyl-2-Azabicyclo[3.1.0]hex-3-en-6-carbonsäuremethylester [(rac)-1] wurden stereoselektive enzymatische Esterspaltungen und Umesterungen untersucht. Hydrolytische Biotransformationen erwiesen sich dabei als vorteilhafter. Mit dem aktivsten und selektivsten Enzym, der Lipase B aus Candida antarctica, wurde nach Optimierung der Reaktionsbedingungen ein präparatives Verfahren für die Racematspaltung von [1] entwickelt und angewandt. Dabei konnte eine Enantioselektivität der Reaktion von E = 34 erreicht werden. Die dargestellten Produkte [(-)-1] und (+)-N-tert-Butyloxycarbonyl-2-Azabicyclo[3.1.0]hex-3-en-6-carbonsäure dienten als Edukte für die Synthese von enantiomerenreinen cis- und trans-ß-ACC-Derivaten.

Da bisher beschriebene biokatalytische Verfahren zur Darstellung von Pip-Derivaten durchweg Ausbeuten unter 50 % lieferten, lag der Schwerpunkt auf der Entwicklung eines Verfahrens, das prinzipiell Ausbeuten von 100 % enantiomerenreinem Produkt ermöglicht. Dazu sollte die spontane Racemisierung von N-p-Toluolsulfonyl-pipecolinaldehyd [(rac)-2] mit einer möglichst hochselektiven Biotransformation gekoppelt werden. Bei einem Screening erwies sich die Bioreduktion von [2] mit der Alkoholdehydrogenase aus Pferdeleber als hochaktiv und enantiospezifisch. Nach Kopplung mit einer enzymatischen NADH-Regenerierung wurde das resultierende Batch-System reaktionskinetisch charakterisiert und optimiert. In einer präparativen Umsetzung wurde enantiomerenreiner N-p-Toluolsulfonyl-D-pipecolinalkohol in 73 % Ausbeute gewonnen.


Within the scope of the present thesis, biotransformation processes for the production of enantiomerically pure derivatives of (i) ß-aminocyclopropanecarboxylic acid (ß-ACC) and (ii) pipecolic acid (Pip) should be developed. Both amino acids are interesting building blocks for the synthesis of pharmaceutically active compounds.

Starting from the racemic ß-ACC-derivative N-tert-butyloxycarbonyl-2-azabicyclo[3.1.0]hex-3-ene-6-carboxylic acid methyl ester [(rac)-1], enzymatic ester hydrolyses and transesterifications were studied. The former reaction type was found to be superior in comparison to the latter. Screening experiments revealed lipase B from Candida antarctica as the most active and selective enzyme. After optimization of the reaction conditions, a preparative scale process for the resolution of [1] could be developed and applied, and an enantiomeric ratio of E = 34 could be achieved. Thereby obtained compounds [(-)-1] and (+)-N-tert-butyloxy-carbonyl-2-azabicyclo[3.1.0]hex-3-ene-6-carboxylic acid served as chiral starting materials for the synthesis of enantiopure cis- and trans-ß-ACC derivatives.

All biocatalytical methods reported so far for the production of optically active Pip derivatives suffered in low yields (< 50 %). Therefore, the main focus was the development of a process which enabled 100 % yield of enantio-pure product. For this purpose, the spontaneous racemization of N-­p-toluenesulfonyl pipecolic aldehyde [(rac)-2] should be coupled with a preferably enantiospecific biotransformation process. After a screening, the bioreduction of [2] with alcohol dehydrogenase from horse liver proved highly active and enantiospecific. The bioreduction was coupled with an enzymatic NADH regeneration method and the reaction kinetics of the resulting batch-system was analyzed. After optimization of the reaction conditions, optically pure N-p-toluenesulfonyl-D-pipecolic alcohol was synthesized by means of a preparative scale conversion in 73 % yield.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By